Advertisement

PREDECT Protocols for Complex 2D/3D Cultures

  • Suzana Vidic
  • Marta F. Estrada
  • Kjersti Gjerde
  • Vítor E. Santo
  • Annika Osswald
  • Michaël Barbier
  • Yolanda T. Chong
  • Wolfgang Sommergruber
  • Ronald de Hoogt
  • Catarina Brito
  • Ralph Graeser
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1888)

Abstract

PREDECT, a European IMI consortium, has assumed the task to generate robust 2D and 3D culture platforms. Protocols established for 2D and 3D monoculture and stromal coculture models of increasing complexity (spheroid, stirred-tank bioreactor, Matrigel- and collagen-embedded cultures) have been established between six laboratories within academia, biotech, and pharma. These models were tested using three tumor cell lines (MCF7, LNCaP, and NCI-H1437), covering three pathologies (breast, prostate, and lung), but should be readily transferable to other model systems. Fluorescent protein tagged cell lines were used for all platforms, allowing for online measurement of growth curves and drug responses to treatments. All methods, from culture setup to phenotypic characterization and gene expression profiling are described in this chapter.

The adaptable methodologies and detailed protocols described here should help to include these models more readily to the drug discovery pipeline.

Key words

3D cell culture Bioreactor 3D cell culture Matrix-embedded 3D cell culture Fluorescence-labeled cell culture 3D image analysis Tumor models Tumor microenvironment Heterotypic interactions Drug screening 

References

  1. 1.
    Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FD (2015) 3D cell culture systems: advantages and applications. J Cell Physiol 230(1):16–26.  https://doi.org/10.1002/jcp.24683CrossRefGoogle Scholar
  2. 2.
    Edmondson R, Broglie JJ, Adcock AF, Yang L (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12(4):207–218.  https://doi.org/10.1089/adt.2014.573CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18(6):884–901.  https://doi.org/10.1016/j.devcel.2010.05.012CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, Cooper ZA, Chapman PB, Solit DB, Ribas A, Lo RS, Flaherty KT, Ogino S, Wargo JA, Golub TR (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487(7408):500–504.  https://doi.org/10.1038/nature11183CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mueller KL, Madden JM, Zoratti GL, Kuperwasser C, List K, Boerner JL (2012) Fibroblast-secreted hepatocyte growth factor mediates epidermal growth factor receptor tyrosine kinase inhibitor resistance in triple-negative breast cancers through paracrine activation of Met. Breast Cancer Res 14(4):R104.  https://doi.org/10.1186/bcr3224CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kwok TT, Twentyman PR (1985) The response to cytotoxic drugs of EMT6 cells treated either as intact or disaggregated spheroids. Br J Cancer 51(2):211–218CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kerr DJ, Wheldon TE, Kerr AM, Freshney RI, Kaye SB (1986) The effect of adriamycin and 4′-deoxydoxorubicin on cell survival of human lung tumour cells grown in monolayer and as spheroids. Br J Cancer 54(3):423–429CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Longati P, Jia X, Eimer J, Wagman A, Witt MR, Rehnmark S, Verbeke C, Toftgard R, Lohr M, Heuchel RL (2013) 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer 13:95.  https://doi.org/10.1186/1471-2407-13-95CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ekert JE, Johnson K, Strake B, Pardinas J, Jarantow S, Perkinson R, Colter DC (2014) Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitro--implication for drug development. PLoS One 9(3):e92248.  https://doi.org/10.1371/journal.pone.0092248CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148(1):3–15.  https://doi.org/10.1016/j.jbiotec.2010.01.012CrossRefGoogle Scholar
  11. 11.
    Howlett AR, Bailey N, Damsky C, Petersen OW, Bissell MJ (1995) Cellular growth and survival are mediated by beta 1 integrins in normal human breast epithelium but not in breast carcinoma. J Cell Sci 108(Pt 5):1945–1957PubMedGoogle Scholar
  12. 12.
    Huang C, Park CC, Hilsenbeck SG, Ward R, Rimawi MF, Wang YC, Shou J, Bissell MJ, Osborne CK, Schiff R (2011) beta1 integrin mediates an alternative survival pathway in breast cancer cells resistant to lapatinib. Breast Cancer Res 13(4):R84.  https://doi.org/10.1186/bcr2936CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hickman JA, Graeser R, de Hoogt R, Vidic S, Brito C, Gutekunst M, van der Kuip H, Consortium IP (2014) Three-dimensional models of cancer for pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo. Biotechnol J 9(9):1115–1128.  https://doi.org/10.1002/biot.201300492CrossRefPubMedGoogle Scholar
  14. 14.
    Stock K, Estrada MF, Vidic S, Gjerde K, Rudisch A, Santo VE, Barbier M, Blom S, Arundkar SC, Selvam I, Osswald A, Stein Y, Gruenewald S, Brito C, van Weerden W, Rotter V, Boghaert E, Oren M, Sommergruber W, Chong Y, de Hoogt R, Graeser R (2016) Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery. Sci Rep 6:28951.  https://doi.org/10.1038/srep28951CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Estrada MF, Rebelo SP, Davies EJ, Pinto MT, Pereira H, Santo VE, Smalley MJ, Barry ST, Gualda EJ, Alves PM, Anderson E, Brito C Modelling the tumour microenvironment in long-term microencapsulated 3D co-cultures recapitulates phenotypic features of disease progression. Biomaterials 78:50–61 epub before print.  https://doi.org/10.1016/j.biomaterials.2015.11.030
  16. 16.
    Artym VV, Matsumoto K (2010) Imaging cells in three-dimensional collagen matrix. Current Protoc Cell Biol. / editorial board, Juan S Bonifacino [et al] Chapter 10:Unit 10 18 11-20.  https://doi.org/10.1002/0471143030.cb1018s48
  17. 17.
    Barbier M, Jaensch S, Cornelissen F, Vidic S, Gjerde K, de Hoogt R, Graeser R, Gustin E, Chong YT, Consortium IP (2016) Ellipsoid segmentation model for analyzing light-attenuated 3D confocal image stacks of fluorescent multi-cellular spheroids. PLoS One 11(6):e0156942.  https://doi.org/10.1371/journal.pone.0156942CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zanoni M, Piccinini F, Arienti C, Zamagni A, Santi S, Polico R, Bevilacqua A, Tesei A (2016) 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep 6:19103.  https://doi.org/10.1038/srep19103CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Piccinini F, Tesei A, Arienti C, Bevilacqua A (2015) Cancer multicellular spheroids: volume assessment from a single 2D projection. Comput Methods Prog Biomed 118(2):95–106.  https://doi.org/10.1016/j.cmpb.2014.12.003CrossRefGoogle Scholar
  20. 20.
    Lamprecht MR, Sabatini DM, Carpenter AE (2007) CellProfiler: free, versatile software for automated biological image analysis. BioTechniques 42(1):71–75CrossRefPubMedGoogle Scholar
  21. 21.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682.  https://doi.org/10.1038/nmeth.2019CrossRefPubMedGoogle Scholar
  22. 22.
    Strasters KC, van der Voort HTM, Geusebroek JM, Smeulders AWM (1994) Fast attenuation correction in fluorescence confocal imaging: a recursive approach. Bioimaging 2:78–92CrossRefGoogle Scholar
  23. 23.
    Santo VE, Estrada MF, Rebelo SP, Abreu S, Silva I, Pinto C, Veloso SC, Serra AT, Boghaert E, Alves PM, Brito C (2016) Adaptable stirred-tank culture strategies for large scale production of multicellular spheroid-based tumor cell models. J Biotechnol 221:118–129.  https://doi.org/10.1016/j.jbiotec.2016.01.031CrossRefPubMedGoogle Scholar
  24. 24.
    Shaw PJ (2006) Comparison of widefield/deconvolution and confocal microscopy for three-dimensional imaging. In: Pawley JB (ed) Handbook of biological confocal microscopy. SpringerScience+Business Media, New York, pp 453–467CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Suzana Vidic
    • 1
  • Marta F. Estrada
    • 2
    • 8
  • Kjersti Gjerde
    • 3
  • Vítor E. Santo
    • 2
    • 8
  • Annika Osswald
    • 4
  • Michaël Barbier
    • 5
  • Yolanda T. Chong
    • 6
  • Wolfgang Sommergruber
    • 7
  • Ronald de Hoogt
    • 3
  • Catarina Brito
    • 2
    • 8
  • Ralph Graeser
    • 9
  1. 1.Faculty of Medicine, Institute of BiochemistryUniversity of LjubljanaLjubljanaSlovenia
  2. 2.iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
  3. 3.Janssen Pharmaceutica N.VBeerseBelgium
  4. 4.Boehringer Ingelheim RCV, GmbH & Co. KGViennaAustria
  5. 5.Laboratory of Cell Biology and Histology, Department of Veterinary SciencesUniversity of AntwerpWilrijkBelgium
  6. 6.Recursion PharmaceuticalsSalt Lake CityUSA
  7. 7.Boehringer Ingelheim RCV, GmbH & Co. KGViennaAustria
  8. 8.Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
  9. 9.Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RißGermany

Personalised recommendations