Advertisement

A Novel Dendritic Cell-Based Vaccination Protocol to Stimulate Immunosurveillance of Aggressive Cancers

  • Annunziata Nigro
  • Barbara Montico
  • Vincenzo Casolaro
  • Jessica Dal Col
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1884)

Abstract

A major challenge in the development of a successful tumor vaccination is to break immune tolerance and to sensitize efficiently the immune system toward relevant tumor antigens, thus enabling T-cell-mediated antitumor responses in vivo. Dendritic cell (DC)-based immunotherapy shows the advantage to induce an adaptive immune response against the tumor, with the potential to generate a long-lasting immunological memory able to prevent further relapses and hopefully metastasis. Recently different preclinical studies highlighted the golden opportunity to exploit the features of immunogenic cell death (ICD) to generate ex vivo a highly immunogenic tumor cell lysate as potent antigen formulation for improved DC-based vaccine against aggressive cancers. This chapter focuses on the methods to obtain tumor lysates from cells undergoing ICD to be used for DC pulsing and to test the functionality of the generated DCs for antitumor vaccine development.

Key words

Dendritic cells Immunogenic cell death Anticancer vaccine Active immunotherapy 

References

  1. 1.
    Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM, Breckpot K, Brough D, Chaurio R, Cirone M, Coosemans A, Coulie PG, De Ruysscher D, Dini L, de Witte P, Dudek-Peric AM, Faggioni A, Fucikova J, Gaipl US, Golab J, Gougeon ML, Hamblin MR, Hemminki A, Herrmann M, Hodge JW, Kepp O, Kroemer G, Krysko DV, Land WG, Madeo F, Manfredi AA, Mattarollo SR, Maueroder C, Merendino N, Multhoff G, Pabst T, Ricci JE, Riganti C, Romano E, Rufo N, Smyth MJ, Sonnemann J, Spisek R, Stagg J, Vacchelli E, Vandenabeele P, Vandenberk L, Van den Eynde BJ, Van Gool S, Velotti F, Zitvogel L, Agostinis P (2015) Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol 6:588.  https://doi.org/10.3389/fimmu.2015.00588CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, Metivier D, Larochette N, van Endert P, Ciccosanti F, Piacentini M, Zitvogel L, Kroemer G (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13(1):54–61.  https://doi.org/10.1038/nm1523CrossRefPubMedGoogle Scholar
  3. 3.
    Tesniere A, Panaretakis T, Kepp O, Apetoh L, Ghiringhelli F, Zitvogel L, Kroemer G (2008) Molecular characteristics of immunogenic cancer cell death. Cell Death Differ 15(1):3–12.  https://doi.org/10.1038/sj.cdd.4402269CrossRefPubMedGoogle Scholar
  4. 4.
    Garg AD, Vandenberk L, Koks C, Verschuere T, Boon L, Van Gool SW, Agostinis P (2016) Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Sci Transl Med 8(328):328–327.  https://doi.org/10.1126/scitranslmed.aae0105CrossRefGoogle Scholar
  5. 5.
    Montico B, Lapenta C, Ravo M, Martorelli D, Muraro E, Zeng B, Comaro E, Spada M, Donati S, Santini SM, Tarallo R, Giurato G, Rizzo F, Weisz A, Belardelli F, Dolcetti R, Dal Col J (2017) Exploiting a new strategy to induce immunogenic cell death to improve dendritic cell-based vaccines for lymphoma immunotherapy. Oncoimmunology 6(11):e1356964.  https://doi.org/10.1080/2162402X.2017.1356964CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Garg AD, Nowis D, Golab J, Vandenabeele P, Krysko DV, Agostinis P (2010) Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim Biophys Acta 1805(1):53–71.  https://doi.org/10.1016/j.bbcan.2009.08.003CrossRefPubMedGoogle Scholar
  7. 7.
    Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N, Bracci L, Breckpot K, Brough D, Buque A, Castro MG, Cirone M, Colombo MI, Cremer I, Demaria S, Dini L, Eliopoulos AG, Faggioni A, Formenti SC, Fucikova J, Gabriele L, Gaipl US, Galon J, Garg A, Ghiringhelli F, Giese NA, Guo ZS, Hemminki A, Herrmann M, Hodge JW, Holdenrieder S, Honeychurch J, Hu HM, Huang X, Illidge TM, Kono K, Korbelik M, Krysko DV, Loi S, Lowenstein PR, Lugli E, Ma Y, Madeo F, Manfredi AA, Martins I, Mavilio D, Menger L, Merendino N, Michaud M, Mignot G, Mossman KL, Multhoff G, Oehler R, Palombo F, Panaretakis T, Pol J, Proietti E, Ricci JE, Riganti C, Rovere-Querini P, Rubartelli A, Sistigu A, Smyth MJ, Sonnemann J, Spisek R, Stagg J, Sukkurwala AQ, Tartour E, Thorburn A, Thorne SH, Vandenabeele P, Velotti F, Workenhe ST, Yang H, Zong WX, Zitvogel L, Kroemer G, Galluzzi L (2014) Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 3(9):e955691.  https://doi.org/10.4161/21624011.2014.955691CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zwaveling S, Ferreira Mota SC, Nouta J, Johnson M, Lipford GB, Offringa R, van der Burg SH, Melief CJ (2002) Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J Immunol 169(1):350–358CrossRefGoogle Scholar
  9. 9.
    Delamarre L, Couture R, Mellman I, Trombetta ES (2006) Enhancing immunogenicity by limiting susceptibility to lysosomal proteolysis. J Exp Med 203(9):2049–2055.  https://doi.org/10.1084/jem.20052442CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Delamarre L, Pack M, Chang H, Mellman I, Trombetta ES (2005) Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 307(5715):1630–1634.  https://doi.org/10.1126/science.1108003CrossRefPubMedGoogle Scholar
  11. 11.
    Monaco JJ (1995) Pathways for the processing and presentation of antigens to T cells. J Leukoc Biol 57(4):543–547CrossRefGoogle Scholar
  12. 12.
    Nencioni A, Grunebach F, Schmidt SM, Muller MR, Boy D, Patrone F, Ballestrero A, Brossart P (2008) The use of dendritic cells in cancer immunotherapy. Crit Rev Oncol Hematol 65(3):191–199.  https://doi.org/10.1016/j.critrevonc.2007.10.002CrossRefPubMedGoogle Scholar
  13. 13.
    Palucka AK, Ueno H, Fay J, Banchereau J (2008) Dendritic cells: a critical player in cancer therapy? J Immunother 31(9):793–805.  https://doi.org/10.1097/CJI.0b013e31818403bcCrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Popescu I, Macedo C, Zeevi A, Nellis J, Patterson KR, Logar A, Rowe D, Reyes J, Rao AS, Storkus WJ, Fung JJ, Metes D (2003) Ex vivo priming of naive T cells into EBV-specific Th1/Tc1 effector cells by mature autologous DC loaded with apoptotic/necrotic LCL. Am J Transplant 3(11):1369–1377CrossRefGoogle Scholar
  15. 15.
    Goldszmid RS, Idoyaga J, Bravo AI, Steinman R, Mordoh J, Wainstok R (2003) Dendritic cells charged with apoptotic tumor cells induce long-lived protective CD4+ and CD8+ T cell immunity against B16 melanoma. J Immunol 171(11):5940–5947CrossRefGoogle Scholar
  16. 16.
    Chiang CL, Kandalaft LE, Tanyi J, Hagemann AR, Motz GT, Svoronos N, Montone K, Mantia-Smaldone GM, Smith L, Nisenbaum HL, Levine BL, Kalos M, Czerniecki BJ, Torigian DA, Powell DJ Jr, Mick R, Coukos G (2013) A dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: from bench to bedside. Clin Cancer Res 19(17):4801–4815.  https://doi.org/10.1158/1078-0432.CCR-13-1185CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hatfield P, Merrick AE, West E, O'Donnell D, Selby P, Vile R, Melcher AA (2008) Optimization of dendritic cell loading with tumor cell lysates for cancer immunotherapy. J Immunother 31(7):620–632.  https://doi.org/10.1097/CJI.0b013e31818213dfCrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kim HS, Choo YS, Koo T, Bang S, Oh TY, Wen J, Song SY (2006) Enhancement of antitumor immunity of dendritic cells pulsed with heat-treated tumor lysate in murine pancreatic cancer. Immunol Lett 103(2):142–148.  https://doi.org/10.1016/j.imlet.2005.10.021CrossRefPubMedGoogle Scholar
  19. 19.
    Vandenberk L, Belmans J, Van Woensel M, Riva M, Van Gool SW (2015) Exploiting the immunogenic potential of cancer cells for improved dendritic cell vaccines. Front Immunol 6:663.  https://doi.org/10.3389/fimmu.2015.00663CrossRefPubMedGoogle Scholar
  20. 20.
    Santini SM, Lapenta C, Logozzi M, Parlato S, Spada M, Di Pucchio T, Belardelli F (2000) Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J Exp Med 191(10):1777–1788CrossRefGoogle Scholar
  21. 21.
    Lapenta C, Donati S, Spadaro F, Castaldo P, Belardelli F, Cox MC, Santini SM (2016) NK cell activation in the antitumor response induced by IFN-alpha dendritic cells loaded with apoptotic cells from follicular lymphoma patients. J Immunol 197(3):795–806.  https://doi.org/10.4049/jimmunol.1600262CrossRefPubMedGoogle Scholar
  22. 22.
    Lapenta C, Santini SM, Spada M, Donati S, Urbani F, Accapezzato D, Franceschini D, Andreotti M, Barnaba V, Belardelli F (2006) IFN-alpha-conditioned dendritic cells are highly efficient in inducing cross-priming CD8(+) T cells against exogenous viral antigens. Eur J Immunol 36(8):2046–2060.  https://doi.org/10.1002/eji.200535579CrossRefPubMedGoogle Scholar
  23. 23.
    Spadaro F, Lapenta C, Donati S, Abalsamo L, Barnaba V, Belardelli F, Santini SM, Ferrantini M (2012) IFN-alpha enhances cross-presentation in human dendritic cells by modulating antigen survival, endocytic routing, and processing. Blood 119(6):1407–1417.  https://doi.org/10.1182/blood-2011-06-363564CrossRefPubMedGoogle Scholar
  24. 24.
    Dauer M, Schad K, Junkmann J, Bauer C, Herten J, Kiefl R, Schnurr M, Endres S, Eigler A (2006) IFN-alpha promotes definitive maturation of dendritic cells generated by short-term culture of monocytes with GM-CSF and IL-4. J Leukoc Biol 80(2):278–286.  https://doi.org/10.1189/jlb.1005592CrossRefPubMedGoogle Scholar
  25. 25.
    Dal Col J, Mastorci K, Fae DA, Muraro E, Martorelli D, Inghirami G, Dolcetti R (2012) Retinoic acid/alpha-interferon combination inhibits growth and promotes apoptosis in mantle cell lymphoma through Akt-dependent modulation of critical targets. Cancer Res 72(7):1825–1835.  https://doi.org/10.1158/0008-5472.CAN-11-2505CrossRefPubMedGoogle Scholar
  26. 26.
    Guidoboni M, Zancai P, Cariati R, Rizzo S, Dal Col J, Pavan A, Gloghini A, Spina M, Cuneo A, Pomponi F, Bononi A, Doglioni C, Maestro R, Carbone A, Boiocchi M, Dolcetti R (2005) Retinoic acid inhibits the proliferative response induced by CD40 activation and interleukin-4 in mantle cell lymphoma. Cancer Res 65(2):587–595PubMedGoogle Scholar
  27. 27.
    Mastorci K, Montico B, Fae DA, Sigalotti L, Ponzoni M, Inghirami G, Dolcetti R, Dal Col J (2016) Phospholipid scramblase 1 as a critical node at the crossroad between autophagy and apoptosis in mantle cell lymphoma. Oncotarget 7(27):41913–41928.  https://doi.org/10.18632/oncotarget.9630CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Annunziata Nigro
    • 1
  • Barbara Montico
    • 2
  • Vincenzo Casolaro
    • 1
  • Jessica Dal Col
    • 1
  1. 1.Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’University of SalernoBaronissiItaly
  2. 2.Immunopathology and Cancer Biomarkers Unit, Department of Translational ResearchCRO National Cancer Institute – IRCCSAvianoItaly

Personalised recommendations