Skip to main content

Statistical Network Inference for Time-Varying Molecular Data with Dynamic Bayesian Networks

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1883))

Abstract

In this chapter, we review the problem of network inference from time-course data, focusing on a class of graphical models known as dynamic Bayesian networks (DBNs). We discuss the relationship of DBNs to models based on ordinary differential equations, and consider extensions to nonlinear time dynamics. We provide an introduction to time-varying DBN models, which allow for changes to the network structure and parameters over time. We also discuss causal perspectives on network inference, including issues around model semantics that can arise due to missing variables. We present a case study of applying time-varying DBNs to gene expression measurements over the life cycle of Drosophila melanogaster. We finish with a discussion of future perspectives, including possible applications of time-varying network inference to single-cell gene expression data.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664

    Article  CAS  PubMed  Google Scholar 

  2. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4(11):682–690

    Article  CAS  PubMed  Google Scholar 

  3. Califano A, Butte AJ, Friend S, Ideker T, Schadt E (2012) Leveraging models of cell regulation and GWAS data in integrative network-based association studies. Nat Genet 44(8):841–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol 8:565

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D (2007) How to infer gene networks from expression profiles. Mol Syst Biol 3:78

    Article  PubMed  PubMed Central  Google Scholar 

  6. Akbani R, Ng PKS, Werner HMJ, Shahmoradgoli M, Zhang F, Ju Z, Liu W, Yang JY, Yoshihara K, Li J, Ling S, Seviour EG, Ram PT, Minna JD, Diao L, Tong P, Heymach JV, Hill SM, Dondelinger F, Städler N, Byers LA, Meric-Bernstam F, Weinstein JN, Broom BM, Verhaak RGW, Liang H, Mukherjee S, Lu Y, Mills GB (2014) A pan-cancer proteomic perspective on the cancer genome atlas. Nat Commun 5:3887

    Article  CAS  PubMed  Google Scholar 

  7. Le Novère N (2015) Quantitative and logic modelling of molecular and gene networks. Nat Rev Genet 16(3):146–158

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yugi K, Kubota H, Hatano A, Kuroda S (2016) Trans-Omics: how to reconstruct biochemical networks across multiple ‘omic’ layers. Trends Biotechnol 34(4):276–290

    Article  CAS  PubMed  Google Scholar 

  9. Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. MIT Press, Cambridge

    Google Scholar 

  10. Murphy KP (2002) Dynamic Bayesian networks: representation, inference and learning. Dissertation, University of California, Berkeley

    Google Scholar 

  11. Husmeier D (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19(17):2271–2282

    Article  CAS  PubMed  Google Scholar 

  12. Hill SM, Lu Y, Molina J, Heiser LM, Spellman PT, Speed TP, Gray JW, Mills GB, Mukherjee S (2012) Bayesian inference of signaling network topology in a cancer cell line. Bioinformatics 28(21):2804–2810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grzegorczyk M, Husmeier D (2008) Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move. Mach Learn 71(2):265–305

    Article  Google Scholar 

  14. Goudie RJ, Mukherjee S (2016) A Gibbs sampler for learning DAGs. J Mach Learn Res 17(1):1032–1070

    Google Scholar 

  15. Oates CJ, Mukherjee S (2012) Network inference and biological dynamics. Ann Appl Stat 6(3):1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oates CJ, Korkola J, Gray JW, Mukherjee S, et al (2014) Joint estimation of multiple related biological networks. Ann Appl Stat 8(3):1892–1919

    Article  Google Scholar 

  17. Hill SM, Nesser NK, Johnson-Camacho K, Jeffress M, Johnson A, Boniface C, Spencer SE, Lu Y, Heiser LM, Lawrence Y, et al (2017) Context specificity in causal signaling networks revealed by phosphoprotein profiling. Cell Syst 4(1):73–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Werhli AV, Husmeier D (2008) Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions. J Bioinformatics Comput Biol 6(3):543–572

    Article  CAS  Google Scholar 

  19. Dondelinger F, Husmeier D, Lèbre S (2012) Dynamic Bayesian networks in molecular plant science: inferring gene regulatory networks from multiple gene expression time series. Euphytica 183(3):361–377

    Article  Google Scholar 

  20. Penfold C, Buchanan-Wollaston V, Denby K, Wild D (2012) Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks. Bioinformatics 28(12):i233–i241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Danaher P, Wang P, Witten DM (2014) The joint graphical lasso for inverse covariance estimation across multiple classes. J R Stat Soc Ser B (Stat Methodol) 76(2):373–397

    Article  Google Scholar 

  22. Xu TR, Vyshemirsky V, Gormand A, von Kriegsheim A, Girolami M, Baillie GS, Ketley D, Dunlop AJ, Milligan G, Houslay MD, et al (2010) Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species. Sci Signal 3(113):ra20

    Article  PubMed  Google Scholar 

  23. Oates CJ, Dondelinger F, Bayani N, Korkola J, Gray JW, Mukherjee S (2014) Causal network inference using biochemical kinetics. Bioinformatics 30(17):i468–i474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Äijö T, Lähdesmäki H (2009) Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics. Bioinformatics 25(22):2937–2944

    Article  PubMed  Google Scholar 

  25. Talih M, Hengartner N (2005) Structural learning with time-varying components: tracking the cross-section of financial time series. J R Stat Soc B 67(3):321–341

    Article  Google Scholar 

  26. Xuan X, Murphy K (2007) Modeling changing dependency structure in multivariate time series. In: Ghahramani Z (ed) Proceedings of the 24th annual international conference on machine learning (ICML 2007). Omnipress, Madison, pp 1055–1062

    Google Scholar 

  27. Robinson JW, Hartemink AJ (2009) Non-stationary dynamic Bayesian networks. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in neural information processing systems (NIPS), vol 21, pp 1369–1376

    Google Scholar 

  28. Robinson J, Hartemink A (2010) Learning non-stationary dynamic Bayesian networks. J Mach Learn Res 11:3647–3680

    Google Scholar 

  29. Grzegorczyk M, Husmeier D (2009) Non-stationary continuous dynamic Bayesian networks. In: Bengio Y, Schuurmans D, Lafferty J, Williams CKI, Culotta A (eds) Advances in neural information processing systems (NIPS), vol 22, pp 682–690

    Google Scholar 

  30. Grzegorczyk M, Husmeier D (2011) Non-homogeneous dynamic Bayesian networks for continuous data. Mach Learn 83:355–419

    Article  Google Scholar 

  31. Ahmed A, Xing EP (2009) Recovering time-varying networks of dependencies in social and biological studies. Proc Natl Acad Sci 106:11878–11883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lèbre S (2007) Stochastic process analysis for genomics and dynamic Bayesian networks inference. PhD thesis, Université d’Evry-Val-d’Essonne, Évry

    Google Scholar 

  33. Lèbre S, Becq J, Devaux F, Lelandais G, Stumpf M (2010) Statistical inference of the time-varying structure of gene-regulation networks. BMC Syst Biol 4:130

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kolar M, Song L, Xing E (2009) Sparsistent learning of varying-coefficient models with structural changes. In: Bengio Y, Schuurmans D, Lafferty J, Williams CKI, Culotta A (eds) Advances in neural information processing systems (NIPS), vol 22, pp 1006–1014

    Google Scholar 

  35. Dondelinger F, Lèbre S, Husmeier D (2013) Non-homogeneous dynamic Bayesian networks with Bayesian regularization for inferring gene regulatory networks with gradually time-varying structure. Mach Learn 90:191–230

    Article  Google Scholar 

  36. Green P (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711–732

    Article  Google Scholar 

  37. Zellner A (1986) On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In: Goel P, Zellner A (eds) Bayesian inference and decision techniques. Elsevier, New York, pp 233–243

    Google Scholar 

  38. Pearl J (2009) Causality. Cambridge University Press, Cambridge

    Book  Google Scholar 

  39. Pearl J (1995) Causal diagrams for empirical research. Biometrika 82(4):669–688

    Article  Google Scholar 

  40. Spencer SE, Hill SM, Mukherjee S (2015) Inferring network structure from interventional time-course experiments. Ann Appl Stat 9(1):507–524

    Article  Google Scholar 

  41. Hill SM, Heiser LM, Cokelaer T, Unger M, Nesser NK, Carlin DE, Zhang Y, Sokolov A, Paull EO, Wong CK, et al (2016) Inferring causal molecular networks: empirical assessment through a community-based effort. Nat Methods 13(4):310–318

    Article  PubMed  PubMed Central  Google Scholar 

  42. Arbeitman M, Furlong E, Imam F, Johnson E, Null B, Baker B, Krasnow M, Scott M, Davis R, White K (2002) Gene expression during the life cycle of Drosophila melanogaster. Science 297(5590):2270–2275

    Article  CAS  PubMed  Google Scholar 

  43. Guo F, Hanneke S, Fu W, Xing E (2007) Recovering temporally rewiring networks: a model-based approach. In: Proceedings of the 24th international conference on machine learning. ACM, New York, p 328

    Google Scholar 

  44. Zhao W, Serpedin E, Dougherty E (2006) Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 22(17):2129

    Article  CAS  PubMed  Google Scholar 

  45. Sims D, Bursteinas B, Gao Q, Zvelebil M, Baum B (2006) FLIGHT: database and tools for the integration and cross-correlation of large-scale RNAi phenotypic datasets. Nucleic Acids Res 34:D479–D483

    Article  CAS  PubMed  Google Scholar 

  46. Homyk T Jr, Emerson C Jr (1988) Functional interactions between unlinked muscle genes within haploinsufficient regions of the Drosophila genome. Genetics 119(1):105

    PubMed  Google Scholar 

  47. Nongthomba U, Cummins M, Clark S, Vigoreaux J, Sparrow J (2003) Suppression of muscle hypercontraction by mutations in the myosin heavy chain gene of Drosophila melanogaster. Genetics 164(1):209

    Google Scholar 

  48. Montana E, Littleton J (2004) Characterization of a hypercontraction-induced myopathy in Drosophila caused by mutations in mhc. J Cell Biol 164(7):1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parkhurst S, Ish-Horowicz D (1991) wimp, a dominant maternal-effect mutation, reduces transcription of a specific subset of segmentation genes in Drosophila. Genes Dev 5(3):341

    Article  CAS  Google Scholar 

  50. Formstecher E, Aresta S, Collura V, Hamburger A, Meil A, Trehin A, Reverdy C, Betin V, Maire S, Brun C, et al (2005) Protein interaction mapping: a Drosophila case study. Genome Res 15(3):376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sanchez C, Lachaize C, Janody F, Bellon B, Roeder L, Euzenat J, Rechenmann F, Jacq B (1999) Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an internet database. Nucleic Acids Res 27(1):89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dondelinger F, Lèbre S (2016) EDISON: Network reconstruction and changepoint detection, Version 1.1.1

    Google Scholar 

  53. Chan TE, Stumpf MPH, Babtie AC (2017) Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst 5(3):251–267.e3

    Google Scholar 

  54. Filippi S, Holmes CC (2017) A Bayesian nonparametric approach to testing for dependence between random variables. Bayesian Anal 12(4):919–938

    Article  Google Scholar 

  55. Moignard V, Woodhouse S, Haghverdi L, Lilly AJ, Tanaka Y, Wilkinson AC, Buettner F, Macaulay IC, Jawaid W, Diamanti E, Nishikawa SI, Piterman N, Kouskoff V, Theis FJ, Fisher J, Göttgens B (2015) Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat Biotechnol 33(3):269–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reid JE, Wernisch L (2016) Pseudotime estimation: deconfounding single cell time series. Bioinformatics 32(19):2973–2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Campbell KR, Yau C (2016) Order under uncertainty: robust differential expression analysis using probabilistic models for pseudotime inference. PLoS computational biology 12.11: e1005212

    Article  PubMed  PubMed Central  Google Scholar 

  58. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32(4):381–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ocone A, Haghverdi L, Mueller NS, Theis FJ (2015) Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data. Bioinformatics 31(12):i89–i96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Matsumoto H, Kiryu H, Furusawa C, Ko MSH, Ko SBH, Gouda N, Hayashi T, Nikaido I (2017) SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics 33(15):2314–2321

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sanchez-Castillo M, Blanco D, Tienda-Luna IM, Carrion MC, Huang Y (2018) A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data. Bioinformatics 34:964–970

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Dondelinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dondelinger, F., Mukherjee, S. (2019). Statistical Network Inference for Time-Varying Molecular Data with Dynamic Bayesian Networks. In: Sanguinetti, G., Huynh-Thu, V. (eds) Gene Regulatory Networks. Methods in Molecular Biology, vol 1883. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8882-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8882-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8881-5

  • Online ISBN: 978-1-4939-8882-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics