Advertisement

Autophagy pp 135-148 | Cite as

Cell-Free Reconstitution of Autophagic Membrane Formation

  • Min Zhang
  • Liang GeEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1880)

Abstract

Autophagy is a catabolic pathway for bulk turnover of cytoplasmic components through the lysosome. Completion of autophagy requires a sophisticated membrane remodeling process. The early steps involve autophagic membrane precursor generation from the intracellular membranes. The intricate protein-membrane interactions underlying autophagic membrane precursor generation have been a focus of attention but yet poorly defined. Here, we summarize the procedure of a cell-free system we have established to dissect the molecular mechanism of early autophagic membrane generation.

Key words

Autophagy Autophagosome Cell-free reconstitution LC3 lipidation 

Notes

Acknowledgments

L.G. was previously supported by the NIH Pathway to Independence Award (K99/R00) National Institute of General Medical Sciences (Grant Number: 1K99GM114397-02) and is now supported by the State Key Laboratory of Membrane Biology, China; the National Natural Science Foundation of China (31741082), the Tsinghua-Peking Center for Life Sciences, and the National Young Thousand Talents Program. L.G. is deeply grateful for the training provided by Dr. Randy Schekman at the University of California, Berkeley. We thank Bob Lesch at University of California Berkeley for critical reading and helpful editing of the manuscript.

References

  1. 1.
    Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42.  https://doi.org/10.1016/j.cell.2007.12.018CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self- digestion. Nature 451(7182):1069–1075.  https://doi.org/10.1038/nature06639CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Burman C, Ktistakis NT (2010) Autophagosome formation in mammalian cells. Semin Immunopathol 32(4):397–413.  https://doi.org/10.1007/s00281-010-0222-zCrossRefPubMedGoogle Scholar
  4. 4.
    Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24(1):24–41.  https://doi.org/10.1038/cr.2013.168CrossRefPubMedGoogle Scholar
  5. 5.
    Ge L, Baskaran S, Schekman R, Hurley JH (2014) The protein-vesicle network of autophagy. Curr Opin Cell Biol 29C:18–24.  https://doi.org/10.1016/j.ceb.2014.02.005CrossRefGoogle Scholar
  6. 6.
    Chen Y, Yu L (2017) Recent progress in autophagic lysosome reformation. Traffic 18(6):358–361.  https://doi.org/10.1111/tra.12484CrossRefPubMedGoogle Scholar
  7. 7.
    Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19(21):5720–5728.  https://doi.org/10.1093/emboj/19.21.5720CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ge L, Melville D, Zhang M, Schekman R (2013) The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. elife 2:e00947.  https://doi.org/10.7554/eLife.0094700947CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ge L, Schekman R (2013) The ER-Golgi intermediate compartment feeds the phagophore membrane. Autophagy 10(1):170–172CrossRefGoogle Scholar
  10. 10.
    Ge L, Zhang M, Schekman R (2014) Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment. Elife 3:e04135.  https://doi.org/10.7554/eLife.04135CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ge L, Wilz L, Schekman R (2015) Biogenesis of autophagosomal precursors for LC3 lipidation from the ER-Golgi intermediate compartment. Autophagy 11(12):2372–2374.  https://doi.org/10.1080/15548627.2015.1105422CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ge L, Zhang M, Kenny SJ, Liu D, Maeda M, Saito K, Mathur A, Xu K, Schekman R (2017) Remodeling of ER-exit sites initiates a membrane supply pathway for autophagosome biogenesis. EMBO Rep 18:1586–1603.  https://doi.org/10.15252/embr.201744559CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152(4):657–668CrossRefGoogle Scholar
  14. 14.
    Oh-oka K, Nakatogawa H, Ohsumi Y (2008) Physiological pH and acidic phospholipids contribute to substrate specificity in lipidation of Atg8. J Biol Chem 283(32):21847–21852.  https://doi.org/10.1074/jbc.M801836200CrossRefPubMedGoogle Scholar
  15. 15.
    Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130(1):165–178.  https://doi.org/10.1016/j.cell.2007.05.021CrossRefPubMedGoogle Scholar
  16. 16.
    Weidberg H, Shpilka T, Shvets E, Abada A, Shimron F, Elazar Z (2011) LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev Cell 20(4):444–454.  https://doi.org/10.1016/j.devcel.2011.02.006CrossRefPubMedGoogle Scholar
  17. 17.
    Landajuela A, Hervas JH, Anton Z, Montes LR, Gil D, Valle M, Rodriguez JF, Goni FM, Alonso A (2016) Lipid geometry and bilayer curvature modulate LC3/GABARAP-mediated model autophagosomal elongation. Biophys J 110(2):411–422.  https://doi.org/10.1016/j.bpj.2015.11.3524CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schindler AJ, Schekman R (2009) In vitro reconstitution of ER-stress induced ATF6 transport in COPII vesicles. Proc Natl Acad Sci U S A 106(42):17775–17780.  https://doi.org/10.1073/pnas.0910342106CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lam SK, Yoda N, Schekman R (2010) A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum. Proc Natl Acad Sci U S A 107(50):21523–21528.  https://doi.org/10.1073/pnas.1013397107CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Merte J, Jensen D, Wright K, Sarsfield S, Wang Y, Schekman R, Ginty DD (2010) Sec24b selectively sorts Vangl2 to regulate planar cell polarity during neural tube closure. Nat Cell Biol 12(1):41–46.; sup pp 41–48.  https://doi.org/10.1038/ncb2002CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Membrane BiologyBeijingChina
  2. 2.Tsinghua-Peking Center for Life SciencesBeijingChina
  3. 3.School of Life SciencesTsinghua UniversityBeijingChina

Personalised recommendations