Advertisement

Autophagy pp 655-668 | Cite as

Mitophagy Dynamics in Caenorhabditis elegans

  • Konstantinos Palikaras
  • Eirini Lionaki
  • Nektarios TavernarakisEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1880)

Abstract

Mitochondrial selective autophagy (mitophagy) is a critical cellular process for mitochondrial homeostasis and survival both under basal and stress conditions. Distinct cell types display different requirements for mitochondrial turnover depending on their metabolic status, differentiation state, and environmental cues. This points to the necessity of developing novel tools for real-time, tissue-specific assessment of mitophagy. Caenorhabditis elegans is an invaluable model organism for this kind of analysis providing a platform for simultaneous monitoring of mitophagy in vivo in different tissues and cell types, during development, stress conditions, and/or throughout life span. In this chapter we describe three versatile, noninvasive methods, developed for monitoring in vivo early and late mitophagic events in body wall muscles and neuronal cells of C. elegans. These procedures can be readily used and/or provide insights into the generation of novel imaging methods to investigate further the role of mitophagy at the organismal level under normal and pathological conditions.

Key words

Aging Autophagosome Autophagy Caenorhabditis elegans DsRed Green fluorescent protein (GFP) Lysosomes Fluorescent microscopy Mitochondria Mitophagy mtRosella 

Notes

Acknowledgments

We thank A. Pasparaki for expert technical support. We thank R. Devenish for providing the pAS1NB-CS-Rosella plasmid. Some nematode strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the National Center for Research Resources (NCRR) of the National Institutes of Health (NIH). We thank A. Fire for plasmid vectors. This work was funded by grants from the European Research Council (ERC) and the European Commission 7th Framework Programme. K.P. is supported by an AXA Research Fund long-term fellowship. E.L. is supported by a Scholarship for Strengthening Post-Doctoral Research from The Greek State Scholarships Foundation (IKY) within the framework of the Operational Programme “Human Resources Development Program, Education and Life-Long Learning”.

References

  1. 1.
    Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217.  https://doi.org/10.1016/j.cell.2013.05.039CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Springer MZ, Macleod KF (2016) In Brief: Mitophagy: mechanisms and role in human disease. J Pathol 240(3):253–255.  https://doi.org/10.1002/path.4774CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12(1):9–14.  https://doi.org/10.1038/nrm3028CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hamacher-Brady A, Brady NR (2016) Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol Life Sci 73(4):775–795.  https://doi.org/10.1007/s00018-015-2087-8CrossRefPubMedGoogle Scholar
  5. 5.
    Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27(2):433–446.  https://doi.org/10.1038/sj.emboj.7601963CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Collins TJ, Berridge MJ, Lipp P, Bootman MD (2002) Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J 21(7):1616–1627.  https://doi.org/10.1093/emboj/21.7.1616CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W, Huang L, Xue P, Li B, Wang X, Jin H, Wang J, Yang F, Liu P, Zhu Y, Sui S, Chen Q (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14(2):177–185.  https://doi.org/10.1038/ncb2422CrossRefPubMedGoogle Scholar
  8. 8.
    Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, Selak MA, Ney PA, Thompson CB (2008) Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112(4):1493–1502.  https://doi.org/10.1182/blood-2008-02-137398CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, Kundu M, Opferman JT, Cleveland JL, Miller JL, Ney PA (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci U S A 104(49):19500–19505.  https://doi.org/10.1073/pnas.0708818104CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    McWilliams TG, Prescott AR, Allen GF, Tamjar J, Munson MJ, Thomson C, Muqit MM, Ganley IG (2016) mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J Cell Biol 214(3):333–345.  https://doi.org/10.1083/jcb.201603039CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Palikaras K, Lionaki E, Tavernarakis N (2015) Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521(7553):525–528.  https://doi.org/10.1038/nature14300CrossRefPubMedGoogle Scholar
  12. 12.
    Sun N, Yun J, Liu J, Malide D, Liu C, Rovira II, Holmstrom KM, Fergusson MM, Yoo YH, Combs CA, Finkel T (2015) Measuring in vivo mitophagy. Mol Cell 60(4):685–696.  https://doi.org/10.1016/j.molcel.2015.10.009CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schiavi A, Maglioni S, Palikaras K, Shaik A, Strappazzon F, Brinkmann V, Torgovnick A, Castelein N, De Henau S, Braeckman BP, Cecconi F, Tavernarakis N, Ventura N (2015) Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans. Curr Biol 25(14):1810–1822.  https://doi.org/10.1016/j.cub.2015.05.059CrossRefPubMedGoogle Scholar
  14. 14.
    Martinez-Vicente M (2017) Neuronal mitophagy in neurodegenerative diseases. Front Mol Neurosci 10:64.  https://doi.org/10.3389/fnmol.2017.00064CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fang EF, Kassahun H, Croteau DL, Scheibye-Knudsen M, Marosi K, Lu H, Shamanna RA, Kalyanasundaram S, Bollineni RC, Wilson MA, Iser WB, Wollman BN, Morevati M, Li J, Kerr JS, Lu Q, Waltz TB, Tian J, Sinclair DA, Mattson MP, Nilsen H, Bohr VA (2016) NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab 24(4):566–581.  https://doi.org/10.1016/j.cmet.2016.09.004CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fang EF, Waltz TB, Kassahun H, Lu Q, Kerr JS, Morevati M, Fivenson EM, Wollman BN, Marosi K, Wilson MA, Iser WB, Eckley DM, Zhang Y, Lehrmann E, Goldberg IG, Scheibye-Knudsen M, Mattson MP, Nilsen H, Bohr VA, Becker KG (2017) Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway. Sci Rep 7:46208.  https://doi.org/10.1038/srep46208CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Konstantinos Palikaras
    • 1
  • Eirini Lionaki
    • 1
  • Nektarios Tavernarakis
    • 1
    • 2
    Email author
  1. 1.Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology HellasCreteGreece
  2. 2.Faculty of Medicine, Department of Basic SciencesUniversity of CreteCreteGreece

Personalised recommendations