Advertisement

Autophagy pp 561-586 | Cite as

Methods to Determine the Role of Autophagy Proteins in C. elegans Aging

  • Sivan Henis-KorenblitEmail author
  • Alicia MeléndezEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1880)

Abstract

This chapter describes methods for the analysis of autophagy proteins in C. elegans aging. We discuss the strains to be considered, the methods for the delivery of double-stranded RNA, and the methods to measure autophagy levels, autophagic flux, and degradation by autophagy.

Key words

Caenorhabditis elegans L4 Double-stranded RNA dsRNA RNA interference HT115 Transgene GFP::LGG-1 SQST-1::GFP Autophagy Aging Longevity 

Notes

Acknowledgments

Work in the Henis-Korenblit laboratory is supported by grants: no. 2013188 from the Binational Science Foundation, no. I-1211-309.13/2012 from the German-Israeli Foundation for Scientific Research and Development, and no. 3-12066 from the Israeli Ministry of Science, Technology and Space, and work in the Meléndez Lab is supported by grants R15GM102846 from the National Institute of Health, a PSC-CUNY Research award, and A.M. was an Ellison Medical Foundation New Scholar in Aging (AG-NS-0521–0).

References

  1. 1.
    Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118:75–86PubMedPubMedCentralGoogle Scholar
  3. 3.
    Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Dillin A, Hsu AL, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Rates of behavior and aging specified by mitochondrial function during development. Science 298:2398–2401PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Feng J, Bussiere F, Hekimi S (2001) Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 1:633–644PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Lee SS, Lee RY, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33:40–48PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:95–110PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Syntichaki P, Troulinaki K, Tavernarakis N (2007) eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature 445:922–926PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Syntichaki P, Troulinaki K, Tavernarakis N (2007) Protein synthesis is a novel determinant of aging in Caenorhabditis elegans. Ann N Y Acad Sci 1119:289–295PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Apfeld J, O'Connor G, McDonagh T, DiStefano PS, Curtis R (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18:3004–3009PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, Gygi SP, Brunet A (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17:1646–1656PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Klass MR (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6:413–429PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci U S A 95:13091–13096PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Mair W, Morantte I, Rodrigues AP, Manning G, Montminy M, Shaw RJ, Dillin A (2011) Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470:404–408PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Hsin H, Kenyon C (1999) Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399:362–366PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Vilchez D, Saez I, Dillin A (2014) The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5:5659CrossRefPubMedGoogle Scholar
  19. 19.
    Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19:983–997CrossRefPubMedGoogle Scholar
  20. 20.
    Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Lu Q et al (2011) The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes. Dev Cell 21(2):343–357PubMedCrossRefGoogle Scholar
  22. 22.
    Stavoe AK et al (2016) KIF1A/UNC-104 transports ATG-9 to regulate neurodevelopment and autophagy at synapses. Dev Cell 38(2):171–185PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zhang Y, Yan L, Zhou Z, Yang P, Tian E, Zhang K, Zhao Y, Li Z, Song B, Han J et al (2009) SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 136:308–321PubMedCrossRefGoogle Scholar
  24. 24.
    Wu F et al (2012) Differential function of the two Atg4 homologues in the aggrephagy pathway in Caenorhabditis elegans. J Biol Chem 287(35):29457–29467PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Zhang H et al (2013) The two C. elegans ATG-16 homologs have partially redundant functions in the basal autophagy pathway. Autophagy 9(12):1965–1974PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Lapierre LR et al (2013) Autophagy genes are required for normal lipid levels in C. elegans. Autophagy 9(3):278–286PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Ames K et al (2017) A non-cell-autonomous role of BEC-1/BECN1/Beclin1 in coordinating cell-cycle progression and stem cell proliferation during germline development. Curr Biol 27(6):905–913PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Guo B, Huang X, Zhang P, Qi L, Liang Q, Zhang X, Huang J, Fang B, Hou W, Han J et al (2014) Genome-wide screen identifies signaling pathways that regulate autophagy during Caenorhabditis elegans development. EMBO Rep 15:705–713PubMedPubMedCentralGoogle Scholar
  29. 29.
    Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–1391PubMedCrossRefGoogle Scholar
  30. 30.
    Tian Y, Li Z, Hu W, Ren H, Tian E, Zhao Y, Lu Q, Huang X, Yang P, Li X et al (2010) C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141:1042–1055PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Tian E et al (2009) epg-1 functions in autophagy-regulated processes and may encode a highly divergent Atg13 homolog in C. elegans. Autophagy 5(5):608–615PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Liang Q et al (2012) The C. elegans ATG101 homolog EPG-9 directly interacts with EPG-1/Atg13 and is essential for autophagy. Autophagy 8(10):1426–1433PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Zhao YG et al (2017) The ER-localized transmembrane protein EPG-3/VMP1 regulates SERCA activity to control ER-isolation membrane contacts for autophagosome formation. Mol Cell 67(6):974–989 e6PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Wang Z et al (2016) The vici syndrome protein EPG5 Is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes. Mol Cell 63(5):781–795PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Cullup T et al (2013) Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat Genet 45(1):83–87PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Herpin A et al (2015) Defective autophagy through epg5 mutation results in failure to reduce germ plasm and mitochondria. FASEB J 29(10):4145–4161PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Lin L et al (2013) The scaffold protein EPG-7 links cargo-receptor complexes with the autophagic assembly machinery. J Cell Biol 201(1):113–129PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Yang P, Zhang H (2011) The coiled-coil domain protein EPG-8 plays an essential role in the autophagy pathway in C. elegans. Autophagy 7(2):159–165PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Ruck A et al (2011) The Atg6/Vps30/Beclin 1 ortholog BEC-1 mediates endocytic retrograde transport in addition to autophagy in C. elegans. Autophagy 7(4):386–400PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Takacs-Vellai K et al (2005) Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans. Curr Biol 15(16):1513–1517PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Ames K, Melendez A (2017) Non-autonomous autophagy in germline stem cell proliferation. Cell Cycle 16(16):1481–1482PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Toth ML et al (2007) Influence of autophagy genes on ion-channel-dependent neuronal degeneration in Caenorhabditis elegans. J Cell Sci 120(Pt 6):1134–1141PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Rowland AM et al (2006) Presynaptic terminals independently regulate synaptic clustering and autophagy of GABAA receptors in Caenorhabditis elegans. J Neurosci 26(6):1711–1720PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Lee HC et al (2012) Depletion of mboa-7, an enzyme that incorporates polyunsaturated fatty acids into phosphatidylinositol (PI), impairs PI 3-phosphate signaling in Caenorhabditis elegans. Genes Cells 17(9):748–757PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Lowry J et al (2015) High-throughput cloning of temperature-sensitive caenorhabditis elegans mutants with adult syncytial germline membrane architecture defects. G3 (Bethesda) 5(11):2241–2255CrossRefGoogle Scholar
  46. 46.
    Silhankova M et al (2010) Wnt signalling requires MTM-6 and MTM-9 myotubularin lipid-phosphatase function in Wnt-producing cells. EMBO J 29(24):4094–4105PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Roggo L et al (2002) Membrane transport in Caenorhabditis elegans: an essential role for VPS34 at the nuclear membrane. EMBO J 21(7):1673–1683PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4:e24PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lapierre LR, Gelino S, Melendez A, Hansen M (2011) Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol 21:1507–1514PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Toth ML, Sigmond T, Borsos E, Barna J, Erdelyi P, Takacs-Vellai K, Orosz L, Kovacs AL, Csikos G, Sass M et al (2008) Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4:330–338PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426:620PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kang C, You YJ, Avery L (2007) Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev 21:2161–2171PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Sato M, Sato K (2011) Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334(6059):1141–1144PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Samokhvalov V, Scott BA, Crowder CM (2008) Autophagy protects against hypoxic injury in C. elegans. Autophagy 4(8):1034–1041PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hashimoto Y, Ookuma S, Nishida E (2009) Lifespan extension by suppression of autophagy genes in Caenorhabditis elegans. Genes Cells 14(6):717–726PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Al Rawi S et al (2011) Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334(6059):1144–1147PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Alberti A et al (2010) The autophagosomal protein LGG-2 acts synergistically with LGG-1 in dauer formation and longevity in C. elegans. Autophagy 6(5):622–633PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Manil-Segalen M et al (2014) The C. elegans LC3 acts downstream of GABARAP to degrade autophagosomes by interacting with the HOPS subunit VPS39. Dev Cell 28(1):43–55PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Kozlowski L et al (2014) The Caenorhabditis elegans HP1 family protein HPL-2 maintains ER homeostasis through the UPR and hormesis. Proc Natl Acad Sci U S A 111(16):5956–5961PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Nilsson L, Jonsson E, Tuck S (2011) Caenorhabditis elegans numb inhibits endocytic recycling by binding TAT-1 aminophospholipid translocase. Traffic 12(12):1839–1849PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Kostich M, Fire A, Fambrough DM (2000) Identification and molecular-genetic characterization of a LAMP/CD68-like protein from Caenorhabditis elegans. J Cell Sci 113(Pt 14):2595–2606PubMedPubMedCentralGoogle Scholar
  62. 62.
    Gutierrez MG et al (2004) Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci 117(Pt 13):2687–2697PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Jager S et al (2004) Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 117(Pt 20):4837–4848PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Li W et al (2012) Autophagy genes function sequentially to promote apoptotic cell corpse degradation in the engulfing cell. J Cell Biol 197(1):27–35PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Grant B, Hirsh D (1999) Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol Biol Cell 10(12):4311–4326PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Schimmoller F, Riezman H (1993) Involvement of Ypt7p, a small GTPase, in traffic from late endosome to the vacuole in yeast. J Cell Sci 106(Pt 3):823–830PubMedPubMedCentralGoogle Scholar
  67. 67.
    Zhang H, Chang JT, Guo B, Hansen M, Jia K, Kovacs AL, Kumsta C, Lapierre LR, Legouis R, Lin L et al (2015) Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy 11:9–27PubMedPubMedCentralGoogle Scholar
  68. 68.
    Palmisano NJ, Melendez A (2016) Detecting autophagy in Caenorhabditis elegans embryos using markers of P granule degradation. Cold Spring Harb Protoc 2016(1):pdb.prot086504PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Zhang G et al (2017) The composition of a protein aggregate modulates the specificity and efficiency of its autophagic degradation. Autophagy 13(9):1487–1495PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Zhang P, Zhang H (2013) Autophagy modulates miRNA-mediated gene silencing and selectively degrades AIN-1/GW182 in C. elegans. EMBO Rep 14(6):568–576PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24:24–41PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Chang JT, Kumsta C, Hellman AB, Adams LM, Hansen M (2017) Spatiotemporal regulation of autophagy during Caenorhabditis elegans aging. elife 6:e18459PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lapierre LR, Kumsta C, Sandri M, Ballabio A, Hansen M (2015) Transcriptional and epigenetic regulation of autophagy in aging. Autophagy 11:867–880PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Melendez A, Hall DH, Hansen M (2008) Monitoring the role of autophagy in C. elegans aging. Methods Enzymol 451:493–520PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Jia K, Hart AC, Levine B (2007) Autophagy genes protect against disease caused by polyglutamine expansion proteins in Caenorhabditis elegans. Autophagy 3:21–25PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Bai H, Kang P, Hernandez AM, Tatar M (2013) Activin signaling targeted by insulin/dFOXO regulates aging and muscle proteostasis in Drosophila. PLoS Genet 9:e1003941PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD (2008) Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult drosophila. Autophagy 4:176–184PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Pyo JO, Yoo SM, Jung YK (2013) The interplay between autophagy and aging. Diabetes Metab J 37:333–339PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M et al (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Rual JF, Hill DE, Vidal M (2004) ORFeome projects: gateway between genomics and omics. Curr Opin Chem Biol 8:20–25PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Pepper AS, Killian DJ, Hubbard EJ (2003) Genetic analysis of Caenorhabditis elegans glp-1 mutants suggests receptor interaction or competition. Genetics 163:115–132PubMedPubMedCentralGoogle Scholar
  83. 83.
    Jiang H, Fine JP (2007) Survival analysis. Methods Mol Biol 404:303–318PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Jung SH, Jeong JH (2003) Rank tests for clustered survival data. Lifetime Data Anal 9:21–33PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Hars ES, Qi H, Ryazanov AG, Jin S, Cai L, Hu C, Liu LF (2007) Autophagy regulates ageing in C. elegans. Autophagy 3:93–95PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Gelino S, Chang JT, Kumsta C, She X, Davis A, Nguyen C, Panowski S, Hansen M (2016) Intestinal Autophagy Improves Healthspan and Longevity in C. elegans during Dietary Restriction. PLoS Genet 12:e1006135Google Scholar
  87. 87.
    Lapierre LR, De Magalhaes Filho CD, McQuary PR, Chu CC, Visvikis O, Chang JT, Gelino S, Ong B, Davis AE, Irazoqui JE, Dillin A, Hansen M (2013) The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat Commun 4:2267PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Wang MC, O’Rourke EJ, Ruvkun G (2008) Fat metabolism links germline stem cells and longevity in C. elegans. Science 322:957–960PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Felkai S, Ewbank JJ, Lemieux J, Labbe JC, Brown GG, Hekimi S (1999) CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. EMBO J 18:1783–1792PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Rea SL, Ventura N, Johnson TE (2007) Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans. PLoS Biol 5:e259PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Lakowski B, Hekimi S (1996) Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272:1010–1013PubMedCrossRefGoogle Scholar
  92. 92.
    Tsang WY, Sayles LC, Grad LI, Pilgrim DB, Lemire BD (2001) Mitochondrial respiratory chain deficiency in Caenorhabditis elegans results in developmental arrest and increased life span. J Biol Chem 276:32240–32246PubMedCrossRefGoogle Scholar
  93. 93.
    Sheaffer KL, Updike DL, Mango SE (2008) The Target of Rapamycin pathway antagonizes pha-4/FoxA to control development and aging. Curr Biol 18:1355–1364PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Chen D, Li PW, Goldstein BA, Cai W, Thomas EL, Chen F, Hubbard AE, Melov S, Kapahi P (2013) Germline signaling mediates the synergistically prolonged longevity produced by double mutations in daf-2 and rsks-1 in C. elegans. Cell Rep 5:1600–1610PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    McQuary PR, Liao CY, Chang JT, Kumsta C, She X, Davis A, Chu CC, Gelino S, Gomez-Amaro RL, Petrascheck M, Brill LM, Ladiges WC, Kennedy BK, Hansen M (2016) C. elegans S6K Mutants Require a Creatine-Kinase-like Effector for Lifespan Extension. Cell Rep 14:2059–2067PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P (2007) Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6:111–119PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Seo K, Choi E, Lee D, Jeong DE, Jang SK, Lee SJ (2013) Heat shock factor 1 mediates the longevity conferred by inhibition of TOR and insulin/IGF-1 signaling pathways in C. elegans. Aging Cell 12:1073–1081PubMedCrossRefGoogle Scholar
  98. 98.
    Kumsta C, Hansen M (2012) C. elegans rrf-1 mutations maintain RNAi efficiency in the soma in addition to the germline. PLoS One 7:e35428PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Qadota H, Inoue M, Hikita T, Koppen M, Hardin JD, Amano M, Moerman DG, Kaibuchi K (2007) Establishment of a tissue-specific RNAi system in C. elegans. Gene 400:166–173PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Bolz DD, Tenor JL, Aballay A (2010) A conserved PMK-1/p38 MAPK is required in caenorhabditis elegans tissue-specific immune response to Yersinia pestis infection. J Biol Chem 285:10832–10840PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Cai L, Phong BL, Fisher AL, Wang Z (2011) Regulation of fertility, survival, and cuticle collagen function by the Caenorhabditis elegans eaf-1 and ell-1 genes. J Biol Chem 286:35915–35921PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Silva MC, Amaral MD, Morimoto RI (2013) Neuronal reprograming of protein homeostasis by calcium-dependent regulation of the heat shock response. PLoS Genet 9:e1003711PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Melo JA, Ruvkun G (2012) Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses. Cell 149:452–466PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Espelt MV, Estevez AY, Yin X, Strange K (2005) Oscillatory Ca2+ signaling in the isolated Caenorhabditis elegans intestine: role of the inositol-1,4,5-trisphosphate receptor and phospholipases C beta and gamma. J Gen Physiol 126:379–392PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Egan D, Kim J, Shaw RJ, Guan KL (2011) The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7:643–644PubMedCrossRefGoogle Scholar
  106. 106.
    Chapin HC, Okada M, Merz AJ, Miler DL (2015) Tissue-specific autophagy responses to aging and stress in C. elegans. Aging (Albany NY) 7(6):419–434CrossRefGoogle Scholar
  107. 107.
    Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117:2805–2812PubMedCrossRefGoogle Scholar
  108. 108.
    Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, Noda T, Ohsumi Y (1999) Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol 147:435–446PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y (2000) The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151:263–276PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Liang Q, Yang P, Tian E, Han J, Zhang H (2012) The C. elegans ATG101 homolog EPG-9 directly interacts with EPG-1/Atg13 and is essential for autophagy. Autophagy 8:1426–1433PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Palmisano NJ, Rosario N, Wysocki M, Hong M, Grant B, Meléndez A (2017) The recycling endosome protein RAB-10 promotes autophagic flux and localization of the transmembrane protein ATG-9. Autophagy 13(10):1742–1753PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Wilkinson DS, Jariwala JS, Anderson E, Mitra K, Meisenhelder J, Chang JT, Ideker T, Hunter T, Nizet V, Dillin A et al (2015) Phosphorylation of LC3 by the hippo kinases STK3/STK4 is essential for autophagy. Mol Cell 57:55–68PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Mina and Everard Goodman Faculty of Life SciencesBar-Ilan UniversityRamat-GanIsrael
  2. 2.Department of BiologyQueens College, The City University of New YorkFlushingUSA
  3. 3.Biology and Biochemistry PhD ProgramsThe Graduate Center of the City University of New YorkNew YorkUSA

Personalised recommendations