Advertisement

Autophagy pp 511-528 | Cite as

Autophagy in Platelets

  • Meenakshi Banerjee
  • Yunjie Huang
  • Madhu M. Ouseph
  • Smita Joshi
  • Irina Pokrovskaya
  • Brian Storrie
  • Jinchao Zhang
  • Sidney W. Whiteheart
  • Qing Jun WangEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1880)

Abstract

Anucleate platelets are produced by fragmentation of megakaryocytes. Platelets circulate in the bloodstream for a finite period: upon vessel injury, they are activated to participate in hemostasis; upon senescence, unused platelets are cleared. Platelet hypofunction leads to bleeding. Conversely, pathogenic platelet activation leads to occlusive events that precipitate strokes and heart attacks. Recently, we and others have shown that autophagy occurs in platelets and is important for platelet production and normal functions including hemostasis and thrombosis. Due to the unique properties of platelets, such as their lack of nuclei and their propensity for activation, methods for studying platelet autophagy must be specifically tailored. Here, we describe useful methods for examining autophagy in both human and mouse platelets.

Key words

Platelets Autophagy Hemostasis Live imaging Electron microscopy 

Notes

Acknowledgments

The authors thank the laboratory personnel and collaborators who conducted the research on platelet autophagy over the years. The authors thank Dr. Zhenyu Li for helpful discussion. The authors also thank Dr. Harry Chanzu and Laura Tichachek for their careful perusal of this manuscript. This work was supported by a New Scholar in Aging award from the Ellison Medical Foundation (to Q.J.W.), Grant-in-Aid awards from the American Heart Association (AHA16GRNT31310020 to Q.J.W. and AHA16GRNT27620001 to S.W.W.), Predoctoral Fellowships from the American Heart Association (AHA 15PRE25550020 to S.J. and AHA 11PRE7500051 to Y.H.), National Institutes of Health (HL56652 and HL138179 to S.W.W., HL119393 to B.S.), and a Veterans Affairs Merit Award (to S.W.W.).

References

  1. 1.
    Pease DC (1956) An electron microscopic study of red bone marrow. Blood 11(6):501–526PubMedGoogle Scholar
  2. 2.
    Junt T et al (2007) Dynamic visualization of thrombopoiesis within bone marrow. Science 317(5845):1767–1770CrossRefGoogle Scholar
  3. 3.
    Machlus KR, Italiano JE Jr (2013) The incredible journey: from megakaryocyte development to platelet formation. J Cell Biol 201(6):785–796CrossRefGoogle Scholar
  4. 4.
    Harker LA (1977) The kinetics of platelet production and destruction in man. Clin Haematol 6(3):671–693PubMedGoogle Scholar
  5. 5.
    Ault KA, Knowles C (1995) In vivo biotinylation demonstrates that reticulated platelets are the youngest platelets in circulation. Exp Hematol 23(9):996–1001PubMedGoogle Scholar
  6. 6.
    Thompson CB et al (1984) Platelet size and age determine platelet function independently. Blood 63(6):1372–1375PubMedGoogle Scholar
  7. 7.
    Grozovsky R, Hoffmeister KM, Falet H (2010) Novel clearance mechanisms of platelets. Curr Opin Hematol 17(6):585–589CrossRefGoogle Scholar
  8. 8.
    Feng W et al (2014) Dissection of autophagy in human platelets. Autophagy 10(4):642–651CrossRefGoogle Scholar
  9. 9.
    Ouseph MM et al (2015) Autophagy is induced upon platelet activation and is essential for hemostasis and thrombosis. Blood 126(10):1224–1233CrossRefGoogle Scholar
  10. 10.
    Kuma A, Mizushima N (2008) Chromosomal mapping of the GFP-LC3 transgene in GFP-LC3 mice. Autophagy 4(1):61–62CrossRefGoogle Scholar
  11. 11.
    Mizushima N et al (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15(3):1101–1111CrossRefGoogle Scholar
  12. 12.
    Arsov I et al (2008) BAC-mediated transgenic expression of fluorescent autophagic protein Beclin 1 reveals a role for Beclin 1 in lymphocyte development. Cell Death Differ 15(9):1385–1395CrossRefGoogle Scholar
  13. 13.
    Zhang W et al (2016) Hypoxic mitophagy regulates mitochondrial quality and platelet activation and determines severity of I/R heart injury. eLife 5:e21407CrossRefGoogle Scholar
  14. 14.
    Pieczarka EM et al (2014) Platelet vacuoles in a dog with severe nonregenerative anemia: evidence of platelet autophagy. Vet Clin Pathol 43(3):326–329CrossRefGoogle Scholar
  15. 15.
    Valet C et al (2017) A dual role for the class III PI3K, Vps34, in platelet production and thrombus growth. Blood 130:2032CrossRefGoogle Scholar
  16. 16.
    Liu Y et al (2017) Class III PI3K positively regulates platelet activation and thrombosis via PI(3)P-directed function of NADPH oxidase. Arterioscler Thromb Vasc Biol 37:2075CrossRefGoogle Scholar
  17. 17.
    Schwertz H et al (2010) Anucleate platelets generate progeny. Blood 115(18):3801–3809CrossRefGoogle Scholar
  18. 18.
    Moore PK (1982) Prostaglandins, prostacyclin and thromboxanes. Biochem Educ 10(3):82–87CrossRefGoogle Scholar
  19. 19.
    Ren QS et al (2007) Endobrevin/VAMP-8 is the primary v-SNARE for the platelet release reaction. Mol Biol Cell 18(1):24–33CrossRefGoogle Scholar
  20. 20.
    Heintz N (2001) BAC to the future: the use of bac transgenic mice for neuroscience research. Nat Rev Neurosci 2(12):861–870CrossRefGoogle Scholar
  21. 21.
    Pokrovskaya ID et al (2016) STEM tomography reveals that the canalicular system and alpha-granules remain separate compartments during early secretion stages in blood platelets. J Thromb Haemost 14(3):572–584CrossRefGoogle Scholar
  22. 22.
    Cao Y et al (2015) Autophagy regulates the cell cycle of murine HSPCs in a nutrient-dependent manner. Exp Hematol 43(3):229–242CrossRefGoogle Scholar
  23. 23.
    Yadav S, Storrie B (2017) The cellular basis of platelet secretion: emerging structure/function relationships. Platelets 28(2):108–118CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Meenakshi Banerjee
    • 1
  • Yunjie Huang
    • 2
  • Madhu M. Ouseph
    • 3
  • Smita Joshi
    • 1
  • Irina Pokrovskaya
    • 4
  • Brian Storrie
    • 4
  • Jinchao Zhang
    • 1
  • Sidney W. Whiteheart
    • 1
  • Qing Jun Wang
    • 5
  1. 1.Department of Molecular and Cellular BiochemistryUniversity of KentuckyLexingtonUSA
  2. 2.Division of Pulmonary MedicineCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  3. 3.Department of Pathology and Laboratory MedicineBrown UniversityProvidenceUSA
  4. 4.Department of Physiology and BiophysicsUniversity of Arkansas for Medical SciencesLittle RockUSA
  5. 5.Department of Ophthalmology and Visual SciencesUniversity of KentuckyLexingtonUSA

Personalised recommendations