Advertisement

Autophagy pp 359-374 | Cite as

Identification and Validation of Novel Autophagy Regulators Using an Endogenous Readout siGENOME Screen

  • Maria New
  • Tim Van Acker
  • Ming Jiang
  • Rebecca Saunders
  • Jaclyn S. Long
  • Jun-Ichi Sakamaki
  • Kevin M. Ryan
  • Michael Howell
  • Sharon A. ToozeEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1880)

Abstract

Autophagy is a highly regulated process, and its deregulation can contribute to various diseases, including cancer, immune diseases, and neurodegenerative disorders. Here we describe the design, protocol, and analysis of an imaging-based high-throughput screen with an endogenous autophagy readout. The screen uses a genome-wide siRNA library to identify autophagy regulators in mammalian cells.

Key words

siGENOME screen Autophagy Autophagy regulation Endogenous readout LC3 puncta Screen analysis Large data set analysis Hit identification 

References

  1. 1.
    Gallagher LE, Williamson LE, Chan EYW (2016) Advances in autophagy regulatory mechanisms. Cell 5:24.  https://doi.org/10.3390/cells5020024CrossRefGoogle Scholar
  2. 2.
    Slobodkin MR, Elazar Z (2013) The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. Essays Biochem 55:51–64.  https://doi.org/10.1042/bse0550051CrossRefPubMedGoogle Scholar
  3. 3.
    Choi AMK, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368:651–662.  https://doi.org/10.1056/NEJMra1205406CrossRefPubMedGoogle Scholar
  4. 4.
    Lipinski MM, Zheng B, Lu T et al (2010) Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc Natl Acad Sci U S A 107:14164–14169.  https://doi.org/10.1073/pnas.1009485107CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    McKnight NC, Jefferies HBJ, Alemu EA et al (2012) Genome-wide siRNA screen reveals amino acid starvation-induced autophagy requires SCOC and WAC. EMBO J 31:1931–1946.  https://doi.org/10.1038/emboj.2012.36CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Orvedahl A, Sumpter R Jr, Xiao G et al (2011) Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 480:113–117.  https://doi.org/10.1038/nature10546CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Barth S, Glick D, Macleod KF (2010) Autophagy: assays and artifacts. J Pathol 221:117–124.  https://doi.org/10.1002/path.2694CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Joachim J, Jiang M, McKnight NC et al (2015) High-throughput screening approaches to identify regulators of mammalian autophagy. Methods 75:96–104.  https://doi.org/10.1016/j.ymeth.2015.02.002CrossRefPubMedGoogle Scholar
  9. 9.
    Malo N, Hanley JA, Cerquozzi S et al (2006) Statistical practice in high-throughput screening data analysis. Nat Biotechnol 24:167–175.  https://doi.org/10.1038/nbt1186CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Maria New
    • 1
  • Tim Van Acker
    • 1
  • Ming Jiang
    • 2
  • Rebecca Saunders
    • 2
  • Jaclyn S. Long
    • 3
  • Jun-Ichi Sakamaki
    • 3
  • Kevin M. Ryan
    • 2
    • 3
  • Michael Howell
    • 2
    • 3
  • Sharon A. Tooze
    • 1
    Email author
  1. 1.Molecular Cell Biology of Autophagy LaboratoryThe Francis Crick InstituteLondonUK
  2. 2.Tumour Cell Death LaboratoryCancer Research UK Beatson InstituteGlasgowUK
  3. 3.High Throughput ScreeningThe Francis Crick InstituteLondonUK

Personalised recommendations