Advertisement

Carbon Monoxide Dehydrogenases

  • Jae-Hun Jeoung
  • Berta M. Martins
  • Holger Dobbek
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1876)

Abstract

Carbon monoxide dehydrogenases (CODHs) catalyze the reversible oxidation of CO with water to CO2, two electrons, and two protons. Two classes of CODHs exist, having evolved from different scaffolds featuring active sites built from different transition metals. The basic properties of both classes are described in this overview chapter.

Key words

Carbon monoxide dehydrogenase CO2 cluster C Ni enzymes Iron–sulfur clusters 

References

  1. 1.
    Crabtree RH (2005) Organometallic chemistry of the transition metals, 4th edn, John Wiley & Sons, Inc., pp 1–546Google Scholar
  2. 2.
    Appel AM, Bercaw JE, Bocarsly AB et al (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658CrossRefGoogle Scholar
  3. 3.
    King GM, Weber CF (2007) Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat Rev Microbiol 5:107–118CrossRefGoogle Scholar
  4. 4.
    Ragsdale SW (2004) Life with carbon monoxide. Crit Rev Biochem Mol Biol 39:165–195CrossRefGoogle Scholar
  5. 5.
    Sokolova TG, Henstra AM, Sipma J et al (2009) Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes. FEMS Microbiol Ecol 68:131–141CrossRefGoogle Scholar
  6. 6.
    Meyer O, Schlegel HG (1983) Biology of aerobic carbon monoxide-oxidizing bacteria. Annu Rev Microbiol 37:277–310CrossRefGoogle Scholar
  7. 7.
    Techtmann SM, Colman AS, Robb FT (2009) 'That which does not kill us only makes us stronger': the role of carbon monoxide in thermophilic microbial consortia. Environ Microbiol 11:1027–1037CrossRefGoogle Scholar
  8. 8.
    Svetlitchnyi V, Peschel C, Acker G et al (2001) Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans. J Bacteriol 183:5134–5144CrossRefGoogle Scholar
  9. 9.
    Wood HG, Ragsdale SW, Pezacka E (1986) A new pathway of autotrophic growth utilizing carbon monoxide or carbon dioxide and hydrogen. Biochem Int 12:421–440PubMedGoogle Scholar
  10. 10.
    Doukov TI, Iverson TM, Seravalli J et al (2002) A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Science 298:567–572CrossRefGoogle Scholar
  11. 11.
    Ragsdale SW (2008) Enzymology of the Wood-Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci 1125:129–136CrossRefGoogle Scholar
  12. 12.
    Thauer RK, Moller-Zinkhan D, Spormann AM (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu Rev Microbiol 43:43–67CrossRefGoogle Scholar
  13. 13.
    Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 1784:1873–1898CrossRefGoogle Scholar
  14. 14.
    Wang VC, Ragsdale SW, Armstrong FA (2014) Investigations of the efficient electrocatalytic interconversions of carbon dioxide and carbon monoxide by nickel-containing carbon monoxide dehydrogenases. Met Ions Life Sci 14:71–97CrossRefGoogle Scholar
  15. 15.
    Jeoung JH, Fesseler J, Goetzl S et al (2014) Carbon monoxide. Toxic gas and fuel for anaerobes and aerobes: carbon monoxide dehydrogenases. Met Ions Life Sci 14:37–69CrossRefGoogle Scholar
  16. 16.
    Drennan CL, Doukov TI, Ragsdale SW (2004) The metalloclusters of carbon monoxide dehydrogenase/acetyl-CoA synthase: a story in pictures. J Biol Inorg Chem 9:511–515CrossRefGoogle Scholar
  17. 17.
    Can M, Armstrong FA, Ragsdale SW (2014) Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem Rev 114:4149–4174CrossRefGoogle Scholar
  18. 18.
    Hille R, Dingwall S, Wilcoxen J (2015) The aerobic CO dehydrogenase from Oligotropha carboxidovorans. J Biol Inorg Chem 20:243–251CrossRefGoogle Scholar
  19. 19.
    Hille R (2014) The Mo- and Cu-containing CO dehydrogenase from Oligotropha carboxidovorans. J Biol Inorg Chem 19:S79–S79Google Scholar
  20. 20.
    Hille R (2005) Molybdenum-containing hydroxylases. Arch Biochem Biophys 433:107–116CrossRefGoogle Scholar
  21. 21.
    Dobbek H (2011) Structural aspects of mononuclear Mo/W-enzymes. Coordin Chem Rev 255:1104–1116CrossRefGoogle Scholar
  22. 22.
    Zhang B, Hemann CF, Hille R (2010) Kinetic and spectroscopic studies of the molybdenum-copper CO dehydrogenase from Oligotropha carboxidovorans. J Biol Chem 285:12571–12578CrossRefGoogle Scholar
  23. 23.
    Wilcoxen J, Hille R (2013) The hydrogenase activity of the molybdenum/copper-containing carbon monoxide dehydrogenase of Oligotropha carboxidovorans. J Biol Chem 288:36052–36060CrossRefGoogle Scholar
  24. 24.
    Dobbek H, Gremer L, Kiefersauer R et al (2002) Catalysis at a dinuclear [CuSMo(==O)OH] cluster in a CO dehydrogenase resolved at 1.1-A resolution. Proc Natl Acad Sci U S A 99:15971–15976CrossRefGoogle Scholar
  25. 25.
    Wilcoxen J, Zhang B, Hille R (2011) Reaction of the molybdenum- and copper-containing carbon monoxide dehydrogenase from Oligotropha carboxydovorans with quinones. Biochemistry 50:1910–1916CrossRefGoogle Scholar
  26. 26.
    Spreitler F, Brock C, Pelzmann A et al (2010) Interaction of CO dehydrogenase with the cytoplasmic membrane monitored by fluorescence correlation spectroscopy. Chembiochem 11:2419–2423CrossRefGoogle Scholar
  27. 27.
    Rohde M, Mayer F, Meyer O (1984) Immunocytochemical localization of carbon monoxide oxidase in Pseudomonas carboxydovorans—the enzyme is attached to the inner aspect of the cytoplasmic membrane. J Biol Chem 259:4788–4792Google Scholar
  28. 28.
    Meyer O, Gremer L, Ferner R et al (2000) The role of Se, Mo and Fe in the structure and function of carbon monoxide dehydrogenase. Biol Chem 381:865–876CrossRefGoogle Scholar
  29. 29.
    Massey V, Edmondson D (1970) Mechanism of inactivation of xanthine oxidase by cyanide. J Biol Chem 245:6595–6598Google Scholar
  30. 30.
    Gnida M, Ferner R, Gremer L et al (2003) A novel binuclear [CuSMo] cluster at the active site of carbon monoxide dehydrogenase: characterization by X-ray absorption spectroscopy. Biochemistry 42:222–230CrossRefGoogle Scholar
  31. 31.
    Resch M, Dobbek H, Meyer O (2005) Structural and functional reconstruction in situ of the [CuSMoO2] active site of carbon monoxide dehydrogenase from the carbon monoxide oxidizing eubacterium Oligotropha carboxidovorans. J Biol Inorg Chem 10:518–528CrossRefGoogle Scholar
  32. 32.
    Wilcoxen J, Snider S, Hille R (2011) Substitution of silver for copper in the binuclear Mo/Cu center of carbon monoxide dehydrogenase from Oligotropha carboxidovorans. J Am Chem Soc 133:12934–12936CrossRefGoogle Scholar
  33. 33.
    Pelzmann A, Ferner M, Gnida M et al (2009) The CoxD protein of Oligotropha carboxidovorans is a predicted AAA plus ATPase chaperone involved in the biogenesis of the CO dehydrogenase [CuSMoO2] cluster. J Biol Chem 284:9578–9586CrossRefGoogle Scholar
  34. 34.
    Pelzmann AM, Mickoleit F, Meyer O (2014) Insights into the posttranslational assembly of the Mo-, S- and Cu-containing cluster in the active site of CO dehydrogenase of Oligotropha carboxidovorans. J Biol Inorg Chem 19:1399–1414CrossRefGoogle Scholar
  35. 35.
    Gremer L, Kellner S, Dobbek H et al (2000) Binding of flavin adenine dinucleotide to molybdenum-containing carbon monoxide dehydrogenase from Oligotropha carboxidovorans. Structural and functional analysis of a carbon monoxide dehydrogenase species in which the native flavoprotein has been replaced by its recombinant counterpart produced in Escherichia coli. J Biol Chem 275:1864–1872CrossRefGoogle Scholar
  36. 36.
    Shanmugam M, Wilcoxen J, Habel-Rodriguez D et al (2013) 13C and 63,65Cu ENDOR studies of CO dehydrogenase from Oligotropha carboxidovorans. Experimental evidence in support of a copper-carbonyl intermediate. J Am Chem Soc 135:17775–17782CrossRefGoogle Scholar
  37. 37.
    Hofmann M, Kassube JK, Graf T (2005) The mechanism of Mo-/Cu-dependent CO dehydrogenase. J Biol Inorg Chem 10:490–495CrossRefGoogle Scholar
  38. 38.
    Siegbahn PEM, Shestakov AF (2005) Quantum chemical modeling of CO oxidation by the active site of molybdenum CO dehydrogenase. J Comput Chem 26:888–898CrossRefGoogle Scholar
  39. 39.
    Stein BW, Kirk ML (2014) Orbital contributions to CO oxidation in Mo-Cu carbon monoxide dehydrogenase. Chem Commun 50:1104–1106CrossRefGoogle Scholar
  40. 40.
    Enroth C, Eger BT, Okamoto K et al (2000) Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc Natl Acad Sci U S A 97:10723–10728CrossRefGoogle Scholar
  41. 41.
    Bonin I, Martins BM, Purvanov V et al (2004) Active site geometry and substrate recognition of the molybdenum hydroxylase quinoline 2-oxidoreductase. Structure 12:1425–1435CrossRefGoogle Scholar
  42. 42.
    Coelho C, Foti A, Hartmann T et al (2015) Structural insights into xenobiotic and inhibitor binding to human aldehyde oxidase. Nat Chem Biol 11:779–783CrossRefGoogle Scholar
  43. 43.
    Wagener N, Pierik AJ, Ibdah A et al (2009) The Mo-Se active site of nicotinate dehydrogenase. Proc Natl Acad Sci U S A 106:11055–11060CrossRefGoogle Scholar
  44. 44.
    Lindahl PA (2002) The Ni-containing carbon monoxide dehydrogenase family: light at the end of the tunnel? Biochemistry 41:2097–2105CrossRefGoogle Scholar
  45. 45.
    Lindahl PA, Chang B (2001) The evolution of acetyl-CoA synthase. Orig Life Evol Biosph 31:403–434CrossRefGoogle Scholar
  46. 46.
    Wu M, Ren Q, Durkin AS et al (2005) Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLoS Genet 1:e65CrossRefGoogle Scholar
  47. 47.
    Svetlitchnyi V, Dobbek H, Meyer-Klaucke W et al (2004) A functional Ni-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans. Proc Natl Acad Sci U S A 101:446–451CrossRefGoogle Scholar
  48. 48.
    Drennan CL, Heo J, Sintchak MD et al (2001) Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase. Proc Natl Acad Sci U S A 98:11973–11978CrossRefGoogle Scholar
  49. 49.
    Dobbek H, Svetlitchnyi V, Gremer L et al (2001) Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster. Science 293:1281–1285CrossRefGoogle Scholar
  50. 50.
    Darnault C, Volbeda A, Kim EJ et al (2003) Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase. Nat Struct Biol 10:271–279CrossRefGoogle Scholar
  51. 51.
    Gong W, Hao B, Wei Z et al (2008) Structure of the alpha2epsilon2 Ni-dependent CO dehydrogenase component of the Methanosarcina barkeri acetyl-CoA decarbonylase/synthase complex. Proc Natl Acad Sci U S A 105:9558–9563CrossRefGoogle Scholar
  52. 52.
    Bar-Even A, Milo R, Noor E et al (2015) The moderately efficient enzyme: futile encounters and enzyme floppiness. Biochemistry 54:4969–4977CrossRefGoogle Scholar
  53. 53.
    Bar-Even A, Noor E, Savir Y et al (2011) The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50:4402–4410CrossRefGoogle Scholar
  54. 54.
    Ensign SA (1995) Reactivity of carbon monoxide dehydrogenase from Rhodospirillum rubrum with carbon dioxide, carbonyl sulfide, and carbon disulfide. Biochemistry 34:5372–5378CrossRefGoogle Scholar
  55. 55.
    Jeoung JH, Dobbek H (2007) Carbon dioxide activation at the Ni,Fe-cluster of anaerobic carbon monoxide dehydrogenase. Science 318:1461–1464CrossRefGoogle Scholar
  56. 56.
    Wang VC, Can M, Pierce E et al (2013) A unified electrocatalytic description of the action of inhibitors of nickel carbon monoxide dehydrogenase. J Am Chem Soc 135:2198–2206CrossRefGoogle Scholar
  57. 57.
    Wang VC, Islam ST, Can M et al (2015) Investigations by protein film electrochemistry of alternative reactions of nickel-containing carbon monoxide dehydrogenase. J Phys Chem B 119:13690–13697CrossRefGoogle Scholar
  58. 58.
    Fraser DM, Lindahl PA (1999) Evidence for a proposed intermediate redox state in the CO/CO2 active site of acetyl-CoA synthase (carbon monoxide dehydrogenase) from Clostridium thermoaceticum. Biochemistry 38:15706–15711CrossRefGoogle Scholar
  59. 59.
    DeRose VJ, Telser J, Anderson ME et al (1998) A multinuclear ENDOR study of the C-cluster in CO dehydrogenase from Clostridium thermoaceticum: evidence for HxO and histidine coordination to the [Fe4S4] center. J Am Chem Soc 120:8767–8776CrossRefGoogle Scholar
  60. 60.
    Fesseler J, Jeoung JH, Dobbek H (2015) How the [NiFe4S4] cluster of CO dehydrogenase activates CO2 and NCO. Angew Chem Int Ed Engl 54:8560–8564CrossRefGoogle Scholar
  61. 61.
    Jeoung JH, Dobbek H (2009) Structural basis of cyanide inhibition of Ni, Fe-containing carbon monoxide dehydrogenase. J Am Chem Soc 131:9922–9923CrossRefGoogle Scholar
  62. 62.
    Kung Y, Doukov TI, Seravalli J et al (2009) Crystallographic snapshots of cyanide- and water-bound C-clusters from bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Biochemistry 48:7432–7440CrossRefGoogle Scholar
  63. 63.
    Ciaccafava A, Tombolelli D, Domnik L et al (2016) When the inhibitor tells more than the substrate: the cyanide-bound state of a carbon monoxide dehydrogenase. Chem Sci 7:3162–3171CrossRefGoogle Scholar
  64. 64.
    Ciaccafava A, Tombolelli D, Domnik L et al (2017) Carbon monoxide dehydrogenase reduces cyanate to cyanide. Angew Chem Int Ed Engl 56:7398–7401CrossRefGoogle Scholar
  65. 65.
    Amara P, Mouesca JM, Volbeda A et al (2011) Carbon monoxide dehydrogenase reaction mechanism: a likely case of abnormal CO2 insertion to a Ni-H(−) bond. Inorg Chem 50:1868–1878CrossRefGoogle Scholar
  66. 66.
    Lindahl PA (2012) Metal-metal bonds in biology. J Inorg Biochem 106:172–178CrossRefGoogle Scholar
  67. 67.
    Parkin A, Seravalli J, Vincent KA et al (2007) Rapid and efficient electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode. J Am Chem Soc 129:10328–10329CrossRefGoogle Scholar
  68. 68.
    Lazarus O, Woolerton TW, Parkin A et al (2009) Water-gas shift reaction catalyzed by redox enzymes on conducting graphite platelets. J Am Chem Soc 131:14154–14155CrossRefGoogle Scholar
  69. 69.
    Bachmeier A, Hall S, Ragsdale SW et al (2014) Selective visible-light-driven CO2 reduction on a p-type dye-sensitized NiO photocathode. J Am Chem Soc 136:13518–13521CrossRefGoogle Scholar
  70. 70.
    Merrouch M, Hadj-Said J, Domnik L et al (2015) O2 inhibition of Ni-containing CO dehydrogenase is partly reversible. Chemistry 21:18934–18938CrossRefGoogle Scholar
  71. 71.
    Domnik L, Merrouch M, Goetzl S et al (2017) CODH-IV: a novel high efficiency CO-scavenging CO dehydrogenase with increased resistance to O2. Angew Chem Int Ed Engl 56(48):15466–15469CrossRefGoogle Scholar
  72. 72.
    Loke HK, Bennett GN, Lindahl PA (2000) Active acetyl-CoA synthase from Clostridium thermoaceticum obtained by cloning and heterologous expression of acsAB in Escherichia coli. Proc Natl Acad Sci U S A 97:12530–12535CrossRefGoogle Scholar
  73. 73.
    Inoue T, Yoshida T, Wada K et al (2011) A simple, large-scale overexpression method of deriving carbon monoxide dehydrogenase II from thermophilic bacterium Carboxydothermus hydrogenoformans. Biosci Biotechnol Biochem 75:1392–1394CrossRefGoogle Scholar
  74. 74.
    Hadj-Said J, Pandelia ME, Leger C et al (2015) The carbon monoxide dehydrogenase from Desulfovibrio vulgaris. Biochim Biophys Acta 1847:1574–1583CrossRefGoogle Scholar
  75. 75.
    Kim EJ, Feng J, Bramlett MR et al (2004) Evidence for a proton transfer network and a required persulfide-bond-forming cysteine residue in Ni-containing carbon monoxide dehydrogenases. Biochemistry 43:5728–5734CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jae-Hun Jeoung
    • 1
  • Berta M. Martins
    • 1
  • Holger Dobbek
    • 1
  1. 1.Institute of Biology, Structural Biology and BiochemistryHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations