Advertisement

Enzymatic Systems with Homology to Nitrogenase: Biosynthesis of Bacteriochlorophyll and Coenzyme F430

  • Jürgen Moser
  • Gunhild Layer
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1876)

Abstract

Enzymes with homology to nitrogenase are essential for the reduction of chemically stable double bonds within the biosynthetic pathways of bacteriochlorophyll and coenzyme F430. These tetrapyrrole-based compounds are crucial for bacterial photosynthesis and the biogenesis of methane in methanogenic archaea. Formation of bacteriochlorophyll requires the unique ATP-dependent enzyme chlorophyllide oxidoreductase (COR) for the two-electron reduction of chlorophyllide to bacteriochlorophyllide. COR catalysis is based on the homodimeric protein subunit BchX2, which facilitates the transfer of electrons to the corresponding heterotetrameric catalytic subunit (BchY/BchZ)2. By analogy to the nitrogenase system, the dynamic switch protein BchX2 contains a [4Fe-4S] cluster that triggers the ATP-driven transfer of electrons onto a second [4Fe-4S] cluster located in (BchY/BchZ)2. The subsequent substrate reduction and protonation is unrelated to nitrogenase catalysis, with no further involvement of a molybdenum-containing cofactor. The biosynthesis of the nickel-containing coenzyme F430 includes the six-electron reduction of the tetrapyrrole macrocycle of Ni2+-sirohydrochlorin a,c-diamide to Ni2+-hexahydrosirohydrochlorin a,c-diamide catalyzed by CfbC/D. The homodimeric CfbC2 subunit carrying a [4Fe-4S] cluster shows close homology to BchX2. Accordingly, parallelism for the initial ATP-driven electron transfer steps of CfbC/D was proposed. Electrons are received by the dimeric catalytic subunit CfbD2, which contains a second [4Fe-4S] cluster and carries out the saturation of an overall of three double bonds in a highly orchestrated spatial and regioselective process. Following a short introduction to nitrogenase catalysis, this chapter will focus on the recent progress toward the understanding of the nitrogenase-like enzymes COR and CfbC/D, with special emphasis on the underlying enzymatic mechanism(s).

Key words

Chlorophyllide oxidoreductase COR Chlorophyll biosynthesis Coenzyme F430 CfbC CfbD Nitrogenase-like enzymes 

References

  1. 1.
    Hu Y, Ribbe MW (2015) Nitrogenase and homologs. J Biol Inorg Chem 20:435–445CrossRefGoogle Scholar
  2. 2.
    Thauer RK, Kaster AK, Seedorf H et al (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591CrossRefGoogle Scholar
  3. 3.
    Appl M (2000) Ammonia. In: Ullmann's encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co, KGaAGoogle Scholar
  4. 4.
    Ertl G (2008) Reactions at surfaces: from atoms to complexity (Nobel lecture). Angew Chem Int Ed 47:3524–3535CrossRefGoogle Scholar
  5. 5.
    Duval S, Danyal K, Shaw S et al (2013) Electron transfer precedes ATP hydrolysis during nitrogenase catalysis. Proc Natl Acad Sci U S A 110:16414–16419CrossRefGoogle Scholar
  6. 6.
    Einsle O, Tezcan FA, Andrade SL et al (2002) Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 297:1696–1700CrossRefGoogle Scholar
  7. 7.
    Kim J, Rees DC (1992) Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from Azotobacter vinelandii. Nature 360:553–560CrossRefGoogle Scholar
  8. 8.
    Thorneley RN, Lowe DJ, Eday RR et al (1979) The coupling of electron transfer in nitrogenase to the hydrolysis of magnesium adenosine triphosphate. Biochem Soc Trans 7:633–636CrossRefGoogle Scholar
  9. 9.
    Tezcan FA, Kaiser JT, Mustafi D et al (2005) Nitrogenase complexes: multiple docking sites for a nucleotide switch protein. Science 309:1377–1380CrossRefGoogle Scholar
  10. 10.
    Hoffman BM, Lukoyanov D, Yang ZY et al (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114:4041–4062CrossRefGoogle Scholar
  11. 11.
    Moser J, Brocker MJ (2011) Methods for nitrogenase-like dark operative protochlorophyllide oxidoreductase. Methods Mol Biol 766:129–143CrossRefGoogle Scholar
  12. 12.
    Moser J, Brocker MJ (2011) Enzymatic systems with homology to nitrogenase. Methods Mol Biol 766:67–77CrossRefGoogle Scholar
  13. 13.
    Layer G, Krausze J, Moser J (2017) Reduction of chemically stable multibonds: nitrogenase-like biosynthesis of tetrapyrroles. Adv Exp Med Biol 925:147–161CrossRefGoogle Scholar
  14. 14.
    Reinbothe C, El Bakkouri M, Buhr F et al (2010) Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. Trends Plant Sci 15:614–624CrossRefGoogle Scholar
  15. 15.
    Moser J, Schubert W-D (2011) Dark-operative protochlorophyllide oxidoreductase. In: Encyclopedia of inorganic and bioinorganic chemistry. John Wiley & Sons, Ltd, Hoboken, New JerseyGoogle Scholar
  16. 16.
    Nomata J, Mizoguchi T, Tamiaki H et al (2006) A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis: reconstitution of chlorophyllide a reductase with purified X-protein (BchX) and YZ-protein (BchY-BchZ) from Rhodobacter capsulatus. J Biol Chem 281:15021–15028CrossRefGoogle Scholar
  17. 17.
    Moore SJ, Sowa ST, Schuchardt C et al (2017) Elucidation of the biosynthesis of the methane catalyst coenzyme F430. Nature 543:78–82CrossRefGoogle Scholar
  18. 18.
    Zheng K, Ngo PD, Owens VL et al (2016) The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea. Science 354:339–342CrossRefGoogle Scholar
  19. 19.
    Cavalier-Smith T (2003) Molecular mechanisms of photosynthesis. Q Rev Biol 78:234–235CrossRefGoogle Scholar
  20. 20.
    Watzlich D, Brocker MJ, Uliczka F et al (2009) Chimeric nitrogenase-like enzymes of (bacterio)chlorophyll biosynthesis. J Biol Chem 284:15530–15540CrossRefGoogle Scholar
  21. 21.
    Burke DH, Hearst JE, Sidow A (1993) Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins. Proc Natl Acad Sci U S A 90:7134–7138CrossRefGoogle Scholar
  22. 22.
    Kiesel S, Watzlich D, Lange C et al (2015) Iron-sulfur cluster-dependent catalysis of chlorophyllide a oxidoreductase from Roseobacter denitrificans. J Biol Chem 290:1141–1154CrossRefGoogle Scholar
  23. 23.
    Kim EJ, Kim JS, Lee IH et al (2008) Superoxide generation by chlorophyllide a reductase of Rhodobacter sphaeroides. J Biol Chem 283:3718–3730CrossRefGoogle Scholar
  24. 24.
    Schindelin H, Kisker C, Schlessman JL et al (1997) Structure of ADP•AlF4-stabilized nitrogenase complex and its implications for signal transduction. Nature 387:370–376CrossRefGoogle Scholar
  25. 25.
    Moser J, Lange C, Krausze J et al (2013) Structure of ADP-aluminium fluoride-stabilized protochlorophyllide oxidoreductase complex. Proc Natl Acad Sci U S A 110:2094–2098CrossRefGoogle Scholar
  26. 26.
    Tsukatani Y, Yamamoto H, Harada J et al (2013) An unexpectedly branched biosynthetic pathway for bacteriochlorophyll b capable of absorbing near-infrared light. Sci Rep 3:1217CrossRefGoogle Scholar
  27. 27.
    Harada J, Mizoguchi T, Tsukatani Y et al (2014) Chlorophyllide a oxidoreductase works as one of the divinyl reductases specifically involved in bacteriochlorophyll a biosynthesis. J Biol Chem 289:12716–12726CrossRefGoogle Scholar
  28. 28.
    Tsukatani Y, Yamamoto H, Mizoguchi T et al (2013) Completion of biosynthetic pathways for bacteriochlorophyll g in Heliobacterium modesticaldum: the C8-ethylidene group formation. Biochim Biophys Acta 1827:1200–1204CrossRefGoogle Scholar
  29. 29.
    Ellefson WL, Whitman WB, Wolfe RS (1982) Nickel-containing factor F430: chromophore of the methylreductase of Methanobacterium. Proc Natl Acad Sci U S A 79:3707–3710CrossRefGoogle Scholar
  30. 30.
    Friedmann HC, Klein A, Thauer RK (1990) Structure and function of the nickel porphinoid, coenzyme F430 and of its enzyme, methyl coenzyme M reductase. FEMS Microbiol Rev 7:339–348CrossRefGoogle Scholar
  31. 31.
    Färber G, Keller W, Kratky C et al (1991) Coenzyme F430 from methanogenic bacteria: complete assignment of configuration based on an x-ray analysis of 12,13-diepi-F430 pentamethyl ester and on NMR spectroscopy. Helv Chim Acta 74:697–716CrossRefGoogle Scholar
  32. 32.
    Mayr S, Latkoczy C, Kruger M et al (2008) Structure of an F430 variant from archaea associated with anaerobic oxidation of methane. J Am Chem Soc 130:10758–10767CrossRefGoogle Scholar
  33. 33.
    Ermler U, Grabarse W, Shima S et al (1997) Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 278:1457–1462CrossRefGoogle Scholar
  34. 34.
    Shima S, Krueger M, Weinert T et al (2011) Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature 481:98–101CrossRefGoogle Scholar
  35. 35.
    Moore SJ, Sowa ST, Schuchardt C et al (2017) Corrigendum: elucidation of the biosynthesis of the methane catalyst coenzyme F430. Nature 545:116CrossRefGoogle Scholar
  36. 36.
    Boyd ES, Peters JW (2013) New insights into the evolutionary history of biological nitrogen fixation. Front Microbiol 4:201PubMedPubMedCentralGoogle Scholar
  37. 37.
    Staples CR, Lahiri S, Raymond J et al (2007) Expression and association of group IV nitrogenase NifD and NifH homologs in the non-nitrogen-fixing archaeon Methanocaldococcus jannaschii. J Bacteriol 189:7392–7398CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für MikrobiologieTechnische Universität BraunschweigBraunschweigGermany
  2. 2.Institut für Pharmazeutische WissenschaftenAlbert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations