Advertisement

Methods to Probe Calcium Regulation by BCL-2 Family Members

  • Marcos A. Carpio
  • Samuel G. Katz
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1877)

Abstract

BCL-2 family members have additional roles beyond direct regulation of mitochondrial outer membrane permeabilization (MOMP) in apoptosis. One such important function is the release of calcium from the endoplasmic reticulum (ER), which critically contributes to the process of apoptosis. Here, we describe a protocol to measure calcium levels in the ER, mitochondria, and cytosol, with specific consideration of BCL-2 family biology.

Key words

Apoptosis Calcium BCL-2 Family Mitochondria Endoplasmic reticulum 

References

  1. 1.
    Michalak M, Robert Parker JM, Opas M (2002) Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 32(5–6):269–278CrossRefPubMedGoogle Scholar
  2. 2.
    Croall DE, DeMartino GN (1991) Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol Rev 71(3):813–847CrossRefPubMedGoogle Scholar
  3. 3.
    Nakagawa T, Yuan J (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150(4):887–894CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Weber H, Muller L, Jonas L, Schult C, Sparmann G, Schuff-Werner P (2013) Calpain mediates caspase-dependent apoptosis initiated by hydrogen peroxide in pancreatic acinar AR42J cells. Free Radic Res 47(5):432–446.  https://doi.org/10.3109/10715762.2013.785633CrossRefPubMedGoogle Scholar
  5. 5.
    Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed JC (1999) Ca2+−induced apoptosis through calcineurin dephosphorylation of BAD. Science 284(5412):339–343CrossRefPubMedGoogle Scholar
  6. 6.
    Suzuki J, Umeda M, Sims PJ, Nagata S (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468(7325):834–838.  https://doi.org/10.1038/nature09583CrossRefPubMedGoogle Scholar
  7. 7.
    Norberg E, Gogvadze V, Ott M, Horn M, Uhlen P, Orrenius S, Zhivotovsky B (2008) An increase in intracellular Ca2+ is required for the activation of mitochondrial calpain to release AIF during cell death. Cell Death Differ 15(12):1857–1864.  https://doi.org/10.1038/cdd.2008.123CrossRefPubMedGoogle Scholar
  8. 8.
    Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284(5756):555–556CrossRefPubMedGoogle Scholar
  9. 9.
    Cardenas C, Miller RA, Smith I, Bui T, Molgo J, Muller M, Vais H, Cheung KH, Yang J, Parker I, Thompson CB, Birnbaum MJ, Hallows KR, Foskett JK (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142(2):270–283.  https://doi.org/10.1016/j.cell.2010.06.007CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta 1787(11):1309–1316.  https://doi.org/10.1016/j.bbabio.2009.01.005CrossRefPubMedGoogle Scholar
  11. 11.
    Duchen MR (1992) Ca(2+)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. Biochem J 283(Pt 1):41–50CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Glancy B, Balaban RS (2012) Role of mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry 51(14):2959–2973.  https://doi.org/10.1021/bi2018909CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hajnoczky G, Robb-Gaspers LD, Seitz MB, Thomas AP (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82(3):415–424CrossRefPubMedGoogle Scholar
  14. 14.
    Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci U S A 96(24):13807–13812CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280(5370):1763–1766CrossRefPubMedGoogle Scholar
  16. 16.
    Rong Y, Distelhorst CW (2008) Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol 70:73–91.  https://doi.org/10.1146/annurev.physiol.70.021507.105852CrossRefPubMedGoogle Scholar
  17. 17.
    Bathori G, Csordas G, Garcia-Perez C, Davies E, Hajnoczky G (2006) Ca2+−dependent control of the permeability properties of the mitochondrial outer membrane and voltage-dependent anion-selective channel (VDAC). J Biol Chem 281(25):17347–17358.  https://doi.org/10.1074/jbc.M600906200CrossRefPubMedGoogle Scholar
  18. 18.
    Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T, Tepikin AV, Petersen OH, Sutton R, Watson AJ, Gerasimenko OV (2009) Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem 284(31):20796–20803.  https://doi.org/10.1074/jbc.M109.025353CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bernardi P, Rasola A (2007) Calcium and cell death: the mitochondrial connection. Subcell Biochem 45:481–506CrossRefPubMedGoogle Scholar
  20. 20.
    Deniaud A, Sharaf el dein O, Maillier E, Poncet D, Kroemer G, Lemaire C, Brenner C (2008) Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27(3):285–299.  https://doi.org/10.1038/sj.onc.1210638CrossRefPubMedGoogle Scholar
  21. 21.
    Duchen MR (2000) Mitochondria and calcium: from cell signalling to cell death. J Physiol 529(Pt 1):57–68CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Rimessi A, Suski JM, Wieckowski MR, Pinton P (2012) Mitochondrial Ca(2+) and apoptosis. Cell Calcium 52(1):36–43.  https://doi.org/10.1016/j.ceca.2012.02.008CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4(7):552–565.  https://doi.org/10.1038/nrm1150CrossRefGoogle Scholar
  24. 24.
    Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27(50):6407–6418.  https://doi.org/10.1038/onc.2008.308CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13(9):566–578.  https://doi.org/10.1038/nrm3412CrossRefPubMedGoogle Scholar
  26. 26.
    Gross A, Katz SG (2017) Non-apoptotic functions of BCL-2 family proteins. Cell Death Differ 24(8):1348–1358.  https://doi.org/10.1038/cdd.2017.22CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Pihan P, Carreras-Sureda A, Hetz C (2017) BCL-2 family: integrating stress responses at the ER to control cell demise. Cell Death Differ 24(9):1478–1487.  https://doi.org/10.1038/cdd.2017.82CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Vervliet T, Clerix E, Seitaj B, Ivanova H, Monaco G, Bultynck G (2017) Modulation of Ca2+ signaling by anti-apoptotic B-cell lymphoma 2 proteins at the endoplasmic reticulum-mitochondrial interface. Front Oncol 7:75.  https://doi.org/10.3389/fonc.2017.00075CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Vervliet T, Decrock E, Molgo J, Sorrentino V, Missiaen L, Leybaert L, De Smedt H, Kasri NN, Parys JB, Bultynck G (2014) Bcl-2 binds to and inhibits ryanodine receptors. J Cell Sci 127(Pt 12):2782–2792.  https://doi.org/10.1242/jcs.150011CrossRefPubMedGoogle Scholar
  30. 30.
    Vanden Abeele F, Skryma R, Shuba Y, Van Coppenolle F, Slomianny C, Roudbaraki M, Mauroy B, Wuytack F, Prevarskaya N (2002) Bcl-2-dependent modulation of Ca(2+) homeostasis and store-operated channels in prostate cancer cells. Cancer Cell 1(2):169–179CrossRefGoogle Scholar
  31. 31.
    Schulman JJ, Wright FA, Kaufmann T, Wojcikiewicz RJH. The BCL-2 protein family member BOK binds to the coupling domain of inosital 1,4,5-trisphosphate receptors and protects them from proteolytic cleavage. JBC 288(35):25340–25349CrossRefPubMedGoogle Scholar
  32. 32.
    Arbel N, Shoshan-Barmatz V (2010) Voltage-dependent anion channel 1-based peptides interact with Bcl-2 to prevent antiapoptotic activity. J Biol Chem 285(9):6053–6062.  https://doi.org/10.1074/jbc.M109.082990CrossRefPubMedGoogle Scholar
  33. 33.
    Huang H, Hu X, Eno CO, Zhao G, Li C, White C (2013) An interaction between Bcl-xL and the voltage-dependent anion channel (VDAC) promotes mitochondrial Ca2+ uptake. J Biol Chem 288(27):19870–19881.  https://doi.org/10.1074/jbc.M112.448290CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Monaco G, Decrock E, Arbel N, van Vliet AR, La Rovere RM, De Smedt H, Parys JB, Agostinis P, Leybaert L, Shoshan-Barmatz V, Bultynck G (2015) The BH4 domain of anti-apoptotic Bcl-XL, but not that of the related Bcl-2, limits the voltage-dependent anion channel 1 (VDAC1)-mediated transfer of pro-apoptotic Ca2+ signals to mitochondria. J Biol Chem 290(14):9150–9161.  https://doi.org/10.1074/jbc.M114.622514CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Li Y, Camacho P (2004) Ca2+−dependent redox modulation of SERCA 2b by ERp57. J Cell Biol 164(1):35–46.  https://doi.org/10.1083/jcb.200307010CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD (2008) Chemical calcium indicators. Methods 46(3):143–151.  https://doi.org/10.1016/j.ymeth.2008.09.025CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Raeymaekers L (1998) Modelling of some potential effects of lumenal Ca2+ binding on the kinetics of Ca2+ release from the endoplasmic reticulum. Cell Calcium 23(4):261–268CrossRefPubMedGoogle Scholar
  38. 38.
    Roderick HL, Lechleiter JD, Camacho P (2000) Cytosolic phosphorylation of calnexin controls intracellular Ca(2+) oscillations via an interaction with SERCA2b. J Cell Biol 149(6):1235–1248CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tsien RY (1981) A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290(5806):527–528CrossRefPubMedGoogle Scholar
  40. 40.
    Prilloff S, Noblejas MI, Chedhomme V, Sabel BA (2007) Two faces of calcium activation after optic nerve trauma: life or death of retinal ganglion cells in vivo depends on calcium dynamics. Eur J Neurosci 25(11):3339–3346.  https://doi.org/10.1111/j.1460-9568.2007.05550.xCrossRefPubMedGoogle Scholar
  41. 41.
    Launikonis BS, Zhou J, Royer L, Shannon TR, Brum G, Rios E (2005) Confocal imaging of [Ca2+] in cellular organelles by SEER, shifted excitation and emission ratioing of fluorescence. J Physiol 567(Pt 2):523–543.  https://doi.org/10.1113/jphysiol.2005.087973CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Molecular Probes Handbook. A guide to fluorescent probes and labeling technologies (2010). Chapter 19. Indicators for Ca12+, Mg12+, Zn12+ and other metal ionsGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PathologyYale University School of MedicineNew HavenUSA
  2. 2.CIQUIBIC-Department of Biological ChemistryNational University of CordobaCordobaArgentina

Personalised recommendations