Advertisement

Phytoplasmas pp 321-331 | Cite as

Characterization of Phytoplasmal Effector Protein Interaction with Proteinaceous Plant Host Targets Using Bimolecular Fluorescence Complementation (BiFC)

  • Katrin Janik
  • Hagen Stellmach
  • Cecilia Mittelberger
  • Bettina Hause
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1875)

Abstract

Elucidating the molecular mechanisms underlying plant disease development has become an important aspect of phytoplasma research in the last years. Especially unraveling the function of phytoplasma effector proteins has gained interesting insights into phytoplasma-host interaction at the molecular level. Here, we describe how to analyze and visualize the interaction of a phytoplasma effector with its proteinaceous host partner using bimolecular fluorescence complementation (BiFC) in Nicotiana benthamiana mesophyll protoplasts. The protocol comprises a description of how to isolate protoplasts from leaves and how to transform these protoplasts with BiFC expression vectors containing the phytoplasma effector and the host interaction partner, respectively. If an interaction occurs, a fluorescent YFP-complex is reconstituted in the protoplast, which can be visualized using fluorescence microscopy.

Key words

Bimolecular fluorescence complementation (BiFC) Effector protein Fluorescence microscopy Phytoplasma Protoplast isolation Protoplast transfection Protoplast transformation 

References

  1. 1.
    Hogenhout S, van der Hoorn R, Terauchi R et al (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant-Microbe Interact 22(2):115–122. https://doi.org/10.1094/MPMI-22-2-0115CrossRefPubMedGoogle Scholar
  2. 2.
    Win J, Chaparro-Garcia A, Belhay K et al (2012) Effector biology of plant-associated organisms: concepts and perspectives. Cold Spring Harb Symp Quant Biol 77:1–13. https://doi.org/10.1101/sqb.2012.77.015933CrossRefGoogle Scholar
  3. 3.
    Zhou J, Chai J (2007) Plant pathogenic bacterial type III effectors subdue host responses. Curr Opin Microbiol 11:1–7. https://doi.org/10.1016/j.mib.2008.02.004CrossRefGoogle Scholar
  4. 4.
    Sugio A, MacLean AM, Kingdom HN et al (2011) Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annu Rev Phytopathol 49:175–195. https://doi.org/10.1146/annurev-phyto-072910-095323CrossRefPubMedGoogle Scholar
  5. 5.
    Hoshi A, Oshima K, Kakizawa S et al (2009) A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc Natl Acad Sci U S A 106(15):6416–6421. https://doi.org/10.1073/pnas.0813038106CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bai X, Correa VR, Toruño TY et al (2009) AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Mol Plant-Microbe Interact 22(1):18–30. https://doi.org/10.1094/MPMI-22-1-0018CrossRefPubMedGoogle Scholar
  7. 7.
    Sugio A, Kingdom HN, MacLean AM et al (2011) Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc Natl Acad Sci U S A 108(48):E1254–E1263. https://doi.org/10.1073/pnas.1105664108CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sugawara K, Honma Y, Komatsu K et al (2013) The alteration of plant morphology by small peptides released from the proteolytic processing of the bacterial peptide TENGU. Plant Physiol 162(4):2005–2014. https://doi.org/10.1104/pp.113.218586CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    MacLean AM, Orlovskis Z, Kowitwanich K et al (2014) Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS Biol 12(4):e1001835. https://doi.org/10.1371/journal.pbio.1001835CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Minato N, Himeno M, Hoshi A et al (2014) The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways. Sci Rep 4(7399):1–7. https://doi.org/10.1038/srep07399CrossRefGoogle Scholar
  11. 11.
    Siewert C, Luge T, Duduk B et al (2014) Analysis of expressed genes of the bacterium 'Candidatus phytoplasma mali’ highlights key features of virulence and metabolism. PLoS One 9(4). https://doi.org/10.1371/journal.pone.0094391CrossRefGoogle Scholar
  12. 12.
    Sugio A, MacLean AM, Hogenhout SA (2014) The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN-TCP binding and destabilization. New Phytol 202(3):838–848. https://doi.org/10.1111/nph.12721CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Janik K, Mithöfer A, Raffeiner M et al (2017) An effector of apple proliferation phytoplasma targets TCP transcription factors—a generalized virulence strategy of phytoplasma? Mol Plant Pathol 18(3):321–473. https://doi.org/10.1111/mpp.12409CrossRefGoogle Scholar
  14. 14.
    Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340(6230):245–246. https://doi.org/10.1038/340245a0CrossRefPubMedGoogle Scholar
  15. 15.
    Janik K, Schlink K (2017) Unravelling the function of a bacterial effector from a non-cultivable plant pathogen using a Yeast Two-hybrid S screen. J Vis Exp 119. https://doi.org/10.3791/55150
  16. 16.
    Golemis EA, Serebriiskii I, Law SF (1999) The yeast two-hybrid system: criteria for detecting physiologically significant protein-protein interactions. Curr Issues Mol Biol 1(1–2):31–45PubMedGoogle Scholar
  17. 17.
    Serebriiskii I, Estojak J, Berman M et al (2000) Approaches to detecting false positives in Yeast Two-Hybrid systems. BioTechniques 28(2):328–336CrossRefGoogle Scholar
  18. 18.
    Bruckner A, Polge C, Lentze N et al (2009) Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 10(6):2763–2788. https://doi.org/10.3390/ijms10062763CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kerppola T (2006) Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat Protoc 1(3):1278–1286. https://doi.org/10.1038/nprot.2006.201CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kudla J, Bock R (2016) Lighting the way to protein-protein interactions: recommendations on best practices for bimolecular fluorescence complementation analyses. Plant Cell 28(5):1002–1008. https://doi.org/10.1105/tpc.16.00043CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nagai T, Ibata K, Park E et al (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20(1):87–90. https://doi.org/10.1038/nbt0102-87CrossRefPubMedGoogle Scholar
  22. 22.
    Yoo S, Cho Y, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565–1572. https://doi.org/10.1038/nprot.2007.199CrossRefGoogle Scholar
  23. 23.
    Grefen C, Blatt MR (2012) A 2in1 cloning system enables ratiometric bimolecular fluorescence complementation (rBiFC). Biotech 53(5):311–314. https://doi.org/10.2144/000113941CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Katrin Janik
    • 1
  • Hagen Stellmach
    • 2
  • Cecilia Mittelberger
    • 1
  • Bettina Hause
    • 2
  1. 1.Functional GenomicsLaimburg Research CentreAuer/Ora (BZ)Italy
  2. 2.Department of Cell and Metabolic BiologyLeibniz Institute of Plant BiochemistryHalleGermany

Personalised recommendations