Advertisement

A Cell Model for HSP60 Deficiencies: Modeling Different Levels of Chaperonopathies Leading to Oxidative Stress and Mitochondrial Dysfunction

  • Cagla Cömert
  • Paula Fernandez-Guerra
  • Peter BrossEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1873)

Abstract

Besides providing the majority of ATP production in cells, mitochondria are also involved in many other cellular functions and are central for cellular stress signaling. Mitochondrial dysfunction induces not only inherited mitochondrial disorders but also contributes to neurodegenerative diseases, cancer, diabetes, and metabolic syndrome. The HSP60/HSP10 molecular chaperone complex facilitates folding of mitochondrial proteins and is thus an important factor for many mitochondrial functions. To model different degrees of oxidative stress and mitochondrial dysfunction we here describe a HEK293 derived Flp-In cell system with stable insertion and tunable expression of HSP60 cDNA carrying a dominant negative mutation. When expressed the dominant negative HSP60 mutant is incorporated into endogenously encoded HSP60/HSP10 complexes and impairs chaperone activity of the HSP60/HSP10 complex in a dose dependent manner. Using this system, different levels of oxidative stress and mitochondrial dysfunction challenges can be generated depending on the induction level of the mutant HSP60 cDNA insert. Here we describe our system and pertinent analysis methodology for use in studies of mitochondrial chaperone deficiency and resulting effects of increased production of reactive oxygen species and mitochondrial dysfunction.

Keywords

Heat shock protein 60 deficiency Cell models Image cytometry Mass spectrometry 

Notes

Acknowledgments

We acknowledge financial support from the Ludvig and Sara Elsass Foundation and the Eva og Henry Frænkels Mindefond. C.C. was supported by a scholarship from SCITECH, Aarhus University. We thank Anne Bie for introduction to the Flp-in cell model.

References

  1. 1.
    Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148(6):1145–1159.  https://doi.org/10.1016/j.cell.2012.02.035 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Picard M, Wallace DC, Burelle Y (2016) The rise of mitochondria in medicine. Mitochondrion 30:105–116.  https://doi.org/10.1016/j.mito.2016.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, Suomalainen A, Thorburn DR, Zeviani M, Turnbull DM (2016) Mitochondrial diseases. Nat Rev Dis Primers 2:16080.  https://doi.org/10.1038/nrdp.2016.80 CrossRefGoogle Scholar
  4. 4.
    Raimundo N (2014) Mitochondrial pathology: stress signals from the energy factory. Trends Mol Med 20(5):282–292.  https://doi.org/10.1016/j.molmed.2014.01.005 CrossRefPubMedGoogle Scholar
  5. 5.
    Magnoni R, Palmfeldt J, Hansen J, Christensen JH, Corydon TJ, Bross P (2014) The Hsp60 folding machinery is crucial for manganese superoxide dismutase folding and function. Free Radic Res 48(2):168–179.  https://doi.org/10.3109/10715762.2013.858147 CrossRefPubMedGoogle Scholar
  6. 6.
    Bie AS, Fernandez-Guerra P, Birkler RI, Nisemblat S, Pelnena D, Lu X, Deignan JL, Lee H, Dorrani N, Corydon TJ, Palmfeldt J, Bivina L, Azem A, Herman K, Bross P (2016) Effects of a mutation in the HSPE1 gene encoding the mitochondrial co-chaperonin HSP10 and its potential association with a neurological and developmental disorder. Front Mol Biosci 3:65.  https://doi.org/10.3389/fmolb.2016.00065 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nisemblat S, Yaniv O, Parnas A, Frolow F, Azem A (2015) Crystal structure of the human mitochondrial chaperonin symmetrical football complex. Proc Natl Acad Sci U S A 112(19):6044–6049.  https://doi.org/10.1073/pnas.1411718112 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bross P, Fernandez-Guerra P (2016) Disease-associated mutations in the HSPD1 gene encoding the large subunit of the mitochondrial HSP60/HSP10 chaperonin complex. Front Mol Biosci 3:49.  https://doi.org/10.3389/fmolb.2016.00049 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wakabayashi-Nakao K, Tamura A, Koshiba S, Toyoda Y, Nakagawa H, Ishikawa T (2010) Production of cells with targeted integration of gene variants of human ABC transporter for stable and regulated expression using the Flp recombinase system. Methods Mol Biol 648:139–159.  https://doi.org/10.1007/978-1-60761-756-3_9 CrossRefPubMedGoogle Scholar
  10. 10.
    Bie AS, Palmfeldt J, Hansen J, Christensen R, Gregersen N, Corydon TJ, Bross P (2011) A cell model to study different degrees of Hsp60 deficiency in HEK293 cells. Cell Stress Chaperones 16(6):633–640.  https://doi.org/10.1007/s12192-011-0275-5 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Cagla Cömert
    • 1
    • 2
  • Paula Fernandez-Guerra
    • 1
    • 2
  • Peter Bross
    • 1
    • 2
    Email author
  1. 1.Research Unit for Molecular Medicine, Department of Clinical Medicine, HEALTHAarhus University, and Department of Clinical Biochemistry Aarhus University HospitalAarhusDenmark
  2. 2.Department of BiochemistryAarhus University HospitalAarhusDenmark

Personalised recommendations