Advertisement

Metaproteomics Study of the Gut Microbiome

  • Lisa A. Lai
  • Zachary Tong
  • Ru Chen
  • Sheng Pan
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1871)

Abstract

Proteomics is a widely used method for defining the protein composition of a complex sample. As this approach allows for identification and quantification of proteins across a broad dynamic range as well as detection of post-translational modifications, proteomics is an ideal platform to investigate the gut microbiome at a functional level. The gut microbiome is a dynamic environment which is crucial for overall health and fitness. Imbalances in the gut microbiome can influence nutrient absorption, pathogen resistance, inflammation, and various human diseases. Metaproteomic analysis of the gut microbiome is currently being performed on bacteria isolated from (1) fecal samples (2) colonic lavage, or (3) colon biopsies. Investigation of the gut microbiome has demonstrated that within the colon, there are distinct communities based on spatial location, and separable from the gut microbiomes isolated from stool. In addition to expanding our understanding of host–bacterial interactions for human health and disease, gut microbiome analysis is being utilized for biomarker development to discriminate normal individuals and diseased (i.e., inflammatory bowel disease or colon cancer) patients as well as to monitor disease activity and prognosis.

Key words

Microbiome Proteomics Metaproteomics 

References

  1. 1.
    Frank DN, St Amand AL, Feldman RA et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. PNAS 104:13780–13785CrossRefGoogle Scholar
  2. 2.
    Cresci GA (2015) The gut microbiome: what we do and don’t know. Nutr Clin Pract 30:734–746CrossRefGoogle Scholar
  3. 3.
    Lynch SV, Pederson O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375:2369–2379CrossRefGoogle Scholar
  4. 4.
    Tuddenham S, Sears CL (2015) The intestinal microbiome and health. Curr Opin Infect Dis 28:464–470CrossRefGoogle Scholar
  5. 5.
    Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F et al (2014) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241CrossRefGoogle Scholar
  6. 6.
    Aagaard K, Ma J, Anthony K et al (2014) The placenta harbors a unique microbiome. Sci Transl Med 6:237ra65CrossRefGoogle Scholar
  7. 7.
    Urushiyama D, Suda W, Ohnishi E et al (2017) Microbiome profile of the amniotic fluid as a predictive biomarker of perinatal outcome. Sci Rep 7:12171CrossRefGoogle Scholar
  8. 8.
    DiGiulio DB, Romero R, Amogan HP et al (2008) Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One 3:e3056CrossRefGoogle Scholar
  9. 9.
    Milani C, Duranti S, Bottacini F et al (2017) The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. https://doi.org/10.1128/MMBR.00036-17
  10. 10.
    Biasucci G, Rubini M, Riboni S et al (2010) Mode of delivery affects the bacterial community in the newborn gut. Early Hum Dev 86:13–15CrossRefGoogle Scholar
  11. 11.
    Hollister EB, Riehle K, Luna RA et al (2015) Structure and function of the healthy preadolescent pediatric gut microbiome. Microbiome 3:36CrossRefGoogle Scholar
  12. 12.
    Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–212CrossRefGoogle Scholar
  13. 13.
    Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638CrossRefGoogle Scholar
  14. 14.
    Proctor LM, Sechi S, DiGiacomo ND et al (2014) The integrative human microbiome project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16:276–289CrossRefGoogle Scholar
  15. 15.
    Tamboli CP, Neut C, Desreumaux P et al (2015) Dysbiosis in inflammatory bowel disease. Gut 53:1–4CrossRefGoogle Scholar
  16. 16.
    Ley RE, Turnbaugh PJ, Klein S et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023CrossRefGoogle Scholar
  17. 17.
    Kolmeder CA, Ritari J, Verdam FJ et al (2015) Colonic metaproteomic signatures of active bacteria and the host in obesity. Proteomics 15:3544–3522CrossRefGoogle Scholar
  18. 18.
    Kang Y, Cai Y (2017) Gut microbiota and hypertension: from pathogenesis to new therapeutic strategies. Clin Res Hepatol Gastroenterol. https://doi.org/10.1016/j.clinre.2017.09.006CrossRefGoogle Scholar
  19. 19.
    Turnbaugh PJ, Ridaura VK, Faith JJ et al (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14CrossRefGoogle Scholar
  20. 20.
    David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563CrossRefGoogle Scholar
  21. 21.
    Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227CrossRefGoogle Scholar
  22. 22.
    Wright EK, Kamm MA, Teo SM et al (2015) Recent advances in characterizing the gastrointestinal microbiome in Crohn’s disease: a systematic review. Inflamm Bowel Dis 21:1219–1228CrossRefGoogle Scholar
  23. 23.
    Arthur JC, Perez-Chanona E, Myhlbauer M et al (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–123CrossRefGoogle Scholar
  24. 24.
    Bullman S, Pedamallu CS, Sicinska E et al (2017) Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science. https://doi.org/10.1126/science.aal5240CrossRefGoogle Scholar
  25. 25.
    Karolewska-Bochenek K, Grzesiowski P, Banaszkiewicz A et al (2017) A two-week fecal microbiota transplantation course in pediatric patients with inflammatory bowel disease. Springer, Heidelberg, Boston, MA, pp 1–7Google Scholar
  26. 26.
    Fischer M, Sipe B, Cheng YW et al (2017) Fecal microbiota transplant in severe and severe-complicated Clostridium difficile: a promising treatment approach. Gut Microbes 8:289–302CrossRefGoogle Scholar
  27. 27.
    Wilmes P, Bond PL (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Env Microbiol 6:911–920CrossRefGoogle Scholar
  28. 28.
    Bastida F, Hernandez T, Garcia C (2014) Metaproteomics of soils from semiarid environment: functional and phylogenetic information obtained with different protein extraction methods. J Proteomics 101:31–42CrossRefGoogle Scholar
  29. 29.
    Maier TV, Lucio M, Lee H et al (2017) Impact of dietary resistant starch on the human gut microbiome, metaproteome, and metabolome. MBio 8:e01343–e01347CrossRefGoogle Scholar
  30. 30.
    Williams TJ, Cavicchioli R (2014) Marine metaproteomics: deciphering the microbial metabolic food web. Trends Microbiol 22:248–260CrossRefGoogle Scholar
  31. 31.
    Heyer R, Schallert K, Zoun R et al (2017) Challenges and perspectives of metaproteomic data analysis. J Biotechnol 261:24–36CrossRefGoogle Scholar
  32. 32.
    Zhang X, Li L, Mayne J et al (2017) Assessing the impact of protein extraction methods for human gut metaproteomics. J Proteome. https://doi.org/10.1016/j.jprot.2017.07.001CrossRefGoogle Scholar
  33. 33.
    Juste C, Kreil DP, Beauvallet C et al (2014) Bacterial protein signals are associated with Crohn’s disease. Gut 63:1566–1577CrossRefGoogle Scholar
  34. 34.
    Wilmes P, Heintz-Buschart A, Bond PL (2015) A decade of metaproteomics: where we stand and what the future holds. Proteomics 15:3409–3417CrossRefGoogle Scholar
  35. 35.
    Glatter T, Ahrne E, Schmidt A (2015) Comparison of different sample preparation protocols reveals lysis buffer-specific extraction biases in gram-negative bacteria and human cells. J Proteome Res 14:4472–4485CrossRefGoogle Scholar
  36. 36.
    Xiong W, Giannone RJ, Morowitz MJ et al (2015) Development of an enhanced metaproteomic approach for deepening the microbiome characterization of the human infant gut. J Proteome Res 14:133–141CrossRefGoogle Scholar
  37. 37.
    Erickson AR, Cantarel BL, Lamendella R et al (2012) Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease. PLoS One 7:e49138CrossRefGoogle Scholar
  38. 38.
    Tanca A, Palomba A, Pisanu S et al (2014) A straightforward and efficieint analytical pipeline for metaproteome characterization. Microbiome 2:49CrossRefGoogle Scholar
  39. 39.
    Durban A, Abellan JJ, Jimenez-Hernandez N et al (2011) Assessing gut microbial diversity from feces and rectal mucosa. Microb Ecol 61:123–133CrossRefGoogle Scholar
  40. 40.
    Verberkmoes NC, Russell AL, Shah M et al (2009) Shotgun metaproteomics of the human distal gut microbiota. ISME J 3:179–189CrossRefGoogle Scholar
  41. 41.
    Zoetendal EG, von Wright A, Vilpponen-Salmela T et al (2002) Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 68:3401–3407CrossRefGoogle Scholar
  42. 42.
    Li X, LeBlanc J, Truong A et al (2011) A metaproteomic approach to study human-microbial ecosystems at the mucosal luminal interface. PLoS One 6:e26542CrossRefGoogle Scholar
  43. 43.
    Choo JM, Leong LEX, Rogers GB (2015) Sample storage conditions significantly influence faecal microbiome profiles. Sci Rep 5:16350CrossRefGoogle Scholar
  44. 44.
    Chapman JD, Goodlett DR, Masselon CD (2014) Mulitplexed and data-independent tandem mass spectrometry for global proteome profiling. Mass Spec Rev 33:452–470CrossRefGoogle Scholar
  45. 45.
    Nigjeh EN, Chen R, Allen-Tamura Y et al (2017) Spectral library-based glycopeptide analysis--detection of circulating galectin-3 binding protein in pancreatic cancer. Proteomics Clin Appl 11:1700064CrossRefGoogle Scholar
  46. 46.
    Rosenberger G, Liu Y, Rost HL et al (2017) Inference and quantification of peptidoforms in large sample cohorts by SWATH-MS. Nat Biotechnol 35:781–788CrossRefGoogle Scholar
  47. 47.
    Rost HL, Aebersold R, Schubert OT (2017) Automated SWATH data analysis using targeted extraction of ion chromatograms. Methods Mol Biol 1550:289–307CrossRefGoogle Scholar
  48. 48.
    Alispahic M, Hummel K, Jandreski-Cvetkovic D et al (2010) Species-specific identification and differentiation of Arcobacter, Helicobacter, and Campylobacter by full-spectral matrix-associated laser desorption/ionization time of flight mass spectrometry analysis. J Med Microbiol 59:295–301CrossRefGoogle Scholar
  49. 49.
    Cheng K, Ning Z, Zhang X et al (2017) MetaLab: an automated pipeline for metaproteomic data analysis. Microbiome 5:157CrossRefGoogle Scholar
  50. 50.
    Tang H, Li S, Ye Y (2016) A graph-centric approach for metagenome-guided peptide and protein identification in metaproteomics. PLoS Comput Biol 12:e1005224CrossRefGoogle Scholar
  51. 51.
    Mesuere B, Devreese B, Debyser G et al (2012) Unipept: tryptic peptide-based biodiversity analysis of metaproteome samples. J Proteome Res 11:5773–5780CrossRefGoogle Scholar
  52. 52.
    Mesuere B, Van der Jeugt F, Willems T et al (2018) High-throughput metaprotomics data analysis with Unipept: a tutorial. J Proteome 171:11–22CrossRefGoogle Scholar
  53. 53.
    Zhang X, Ning Z, Moore JI et al (2016) Meta-Pro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota. Microbiome 4:31CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lisa A. Lai
    • 1
  • Zachary Tong
    • 1
  • Ru Chen
    • 1
  • Sheng Pan
    • 2
  1. 1.Department of MedicineUniversity of WashingtonSeattleUSA
  2. 2.Institute of Molecular MedicineUniversity of Texas Health Science Center at HoustonHoustonUSA

Personalised recommendations