Two-Dimensional 16-BAC/SDS Polyacrylamide Gel Electrophoresis of Mitochondrial Membrane Proteins

  • Gary Smejkal
  • Srikanth Kakumanu
Part of the Methods in Molecular Biology book series (MIMB, volume 1871)


The substitution of the reverse polarity benzyldimethyl-n-hexadecylammonium chloride (16-BAC) polyacrylamide gel electrophoresis (PAGE) for isoelectric focusing (IEF) in the first dimension of electrophoresis improves the solubility of extremely hydrophobic proteins and their recovery compared to conventional 2D IEF/SDS PAGE. The acidic environment of 16-BAC PAGE has also been shown to better preserve the labile methylation of basic proteins such as the histones. Several improvements of the 2D 16-BAC/SDS PAGE method are collectively described here with particular emphasis on the separation of mitochondrial membrane proteins of low molecular mass. Lowering the 16-BAC concentration 50-fold in the gel and buffers decreases the formation of mixed 16-BAC/SDS micelles, which otherwise interferes with the separation of very low molecular mass proteins in second dimension SDS PAGE, and consequently improved the resolution of mitochondrial membrane proteins in the 10–30 kDa range.

Key words

Benzyldimethyl-n-hexadecylammonium chloride Cationic detergents Membrane proteins Mitochondria Polyacrylamide gel electrophoresis Proteins Sodium dodecylsulfate Two-dimensional gel electrophoresis Transmembrane domains 



Benzyldimethyl-n-hexadecylammonium chloride


Critical micelle concentration




Hydroxyethyl disulfide


Isoelectric focusing


Potassium dodecylsulfate


Polyacrylamide gel electrophoresis


Phenylmethylsulfonyl fluoride


Sodium dodecylsulfate


Tris (2-carboxyethyl) phosphine


Transmembrane domains


  1. 1.
    Klose J, Kobalz U (1995) Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16:1034–1059CrossRefGoogle Scholar
  2. 2.
    Klose J, Nock C, Herrmann M, Stühler K, Marcus K, Blüggel M, Krause E, Schalkwyk LC, Rastan S, Brown SDM, Büssow K, Himmelbauer H, Lehrach H (2002) Genetic analysis of the mouse brain proteome. Nat Genet 30:385–393CrossRefGoogle Scholar
  3. 3.
    Hamdan M, Righetti PG (2005) Proteomics today: Protein assessment and biomarkers using mass spectrometry, 2D electrophoresis, and microarray technology. Wiley & Sons, Hoboken, NJ, pp 219–265CrossRefGoogle Scholar
  4. 4.
    Klein C, Garcia-Rizo C, Bisle B, Scheffer B, Zischka H, Pfeiffer F, Siedler F, Oesterhelt D (2005) The membrane proteome of Halobacterium salinarum. Proteomics 5:180–197CrossRefGoogle Scholar
  5. 5.
    Kalinowski J, Wolters D, Poetsch A (2008) Proteomics of Corynebacterium glutamicum and other Corynebacteria. From Corynebacteria: genomics and molecular biology (Burkovski A, ed). Caister Academic Press, Norfolk, pp 56–77Google Scholar
  6. 6.
    Aivaliotis M, Corvey C, Tsirogianni I, Karas M, Tsiotis G (2004) Membrane proteome analysis of the green-sulfur bacterium Chlorobium tepidum. Electrophoresis 25:3468–3474CrossRefGoogle Scholar
  7. 7.
    Moller AJB, Witzel K, Vertommen A, Barkholdt V, Svensson B, Carpentier S Mock HP, Finne C (2011) Plant membrane proteomics: challenges and possibilities. Sample preparation in biological mass spectrometry. Springer, Heidelberg, pp 411–434Google Scholar
  8. 8.
    Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM (2009) Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. PNAS 106:1760–1765CrossRefGoogle Scholar
  9. 9.
    Smejkal GB, Bauer DJ (2012) High speed isoelectric focusing of proteins enabling rapid two-dimensional gel electrophoresis. Gel electrophoresis: principles and basics. Intech, Rijeka, pp 157–170Google Scholar
  10. 10.
    Meisrimler CN, Lüthje S (2012) IPG-strips versus off-gel fractionation: advantages and limits of two-dimensional PAGE in separation of microsomal fractions of frequently used plant species and tissues. J Proteome 75:2550–2562CrossRefGoogle Scholar
  11. 11.
    Rabilloud T (2010) Variations on a theme: changes to electrophoretic separations that can make a difference. J Proteome 73:1562–1572CrossRefGoogle Scholar
  12. 12.
    Miller M, Ivano Eberini I, Gianazza E (2010) Other than IPG-DALT: 2-DE variants. Proteomics 10:586–610CrossRefGoogle Scholar
  13. 13.
    Macfarlane DE (1983) Use of benzyldimethyl-n-hexadecylammonium chloride (16-BAC), a cationic detergent, in an acidic polyacrylamide gel electrophoresis system to detect base labile protein methylation in intact cells. Anal Biochem 132:231–235CrossRefGoogle Scholar
  14. 14.
    Macfarlane DE (1984) Inhibitors of cyclic nucleotide phosphodiesterases inhibit protein carboxyl methylation in intact blood platelets. J Biol Chem 259:1357–1362PubMedGoogle Scholar
  15. 15.
    Macfarlane DE (1986) Phorbol diester-induced phosphorylation of nuclear matrix proteins in HL60 promyelocytes. Possible role in differentiation studied by cationic detergent gel electrophoresis systems. J Biol Chem 261:6947–6953PubMedGoogle Scholar
  16. 16.
    Macfarlane DE (1989) Two dimensional benzyldimethyl-n-hexadecylammonium chloride sodium dodecyl sulfate preparative polyacrylamide gel electrophoresis: a high capacity high resolution technique for the purification of proteins from complex mixtures. Anal Biochem 176:457–463CrossRefGoogle Scholar
  17. 17.
    Hartinger J, Stenius K, Högemann D, Jahn R (1996) 16-BAC/SDS-PAGE: a two-dimensional gel electrophoresis system suitable for the separation of integral membrane proteins. Anal Biochem 240:126–133CrossRefGoogle Scholar
  18. 18.
    Zahedi RP, Meisinger C, Sickmann A (2005) Two-dimensional benzyldimethyl-nhexadecylammonium chloride/SDS-PAGE for membrane proteomics. Proteomics 2005(5):3581–3588CrossRefGoogle Scholar
  19. 19.
    Zahedi RP, Moebius J, Sickmann A (2007) Two-dimensional BAC/SDS-PAGE for membrane proteins. In: Bertrand E, Faupel M (eds) Subcellular proteomics: from cell deconstruction to system reconstruction. Springer, Dordrecht, pp 13–20CrossRefGoogle Scholar
  20. 20.
    Kramer ML (2006) A new multiphasic buffer system for benzyldimethyl-n-hexadecylammonium chloride polyacrylamide gel electrophoresis of proteins providing efficient stacking. Electrophoresis 27:347–356CrossRefGoogle Scholar
  21. 21.
    Lee I, Salomon AR, Yu K, Samavati L, Pecina P, Pecinova A, Huttemann M (2009) Isolation of regulatory-competent, phosphorylated cytochrome c oxidase. Methods Enzymol 457:193–210CrossRefGoogle Scholar
  22. 22.
    James GT (1978) Inactivation of the protease inhibitor phenylmethylsulfonyl fluoride in buffers. Anal Biochem 86:574–579CrossRefGoogle Scholar
  23. 23.
    Singh R, Whitesides GM (1995) Reagents for raid reduction of disulfide bonds in proteins. Techniq Protein Chem VI:259–266CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Gary Smejkal
    • 1
  • Srikanth Kakumanu
    • 1
  1. 1.Focus ProteomicsHudsonUSA

Personalised recommendations