Advertisement

Making the Case for Functional Proteomics

  • Ray C. Perkins
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1871)

Abstract

“Making the Case for Functional Proteomics” first differentiates the Functional Proteome from the products of genetic protein expression. Qualitatively, the prevalence of posttranslational modifications (PTMs) virtually insures that individual, functional proteins do not equate to their genetic expression counterparts. Quantitatively, considering the frequency of PTMs and a conservative estimate of the number of functional entities arising from protein interactions, the size of the Functional Proteome exceeds that of the human genome by at least two orders of magnitude. The human genome does not, cannot, map the Functional Proteome. Further, the collective genome of the human microbiome dwarfs the human genome. With these facts established, “Making the Case…” proceeds to examine Functional Proteomics (of which both “gene expression” and “epigenetics” are but parts of a larger whole) within the context of Systems Biology, concluding that functionally related networks comprise the dominant motif for biological activity. Creating just such a network focus is essential in not only expanding basic knowledge but also in applying that knowledge in the pragmatic efforts of drug and biomarker development. Outlines for development of drugs and biomarkers, as well as the realization of precision medicine, within a functional proteomics-based, network motif are provided. The chapter proceeds to asses both the knowledge base and the tools to fully embrace Functional Proteomics. Given the decades-long infatuation with the reductionism of genomics, it is not surprising that both the proteomics knowledge base and tools are assessed as poor to fair. However, even a minor shift in research funding and a renewed challenge to methods developers will rapidly improve the current situation. Adoption of the included “Roadmap” will realistically make the twenty-first century the century of a long-awaited revolution in biology.

Key words

Protein Gene Genome Proteome Functional Proteome Proteomics Functional proteomics Microbiome Posttranslational modifications Protein interactions Epigenetics Gene expression Biological networks Systems biology Drug development Biomarker development Precision medicine 

References

  1. 1.
    Pundir S, Martin M, O’Donovan C (2017) UniProt protein knowledgebase. Methods Mol Biol 1558:41–55. https://doi.org/10.1007/978-1-4939-6783-4_2CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Savage N (2015) Proteomics: high-protein research. Nature 527:S6. https://doi.org/10.1038/527S6aCrossRefPubMedGoogle Scholar
  3. 3.
    Pennisi E (2012) ENCODE project writes eulogy for junk DNA. Science 337(6099):1159–1161. https://doi.org/10.1126/science.337.6099.1159CrossRefPubMedGoogle Scholar
  4. 4.
    Ezkurdia I, Juan D, Rodriguez JM, Frankish A, Diekhans M, Harrow J, Vazquez J, Valencia A, Tress ML (2014) Multiple evidence strands suggest that there may be as few as 19 000 human protein-coding genes. Hum Mol Genet 23(22):5866–5878CrossRefGoogle Scholar
  5. 5.
    Ponomarenko EA, Poverennaya EV, Ilgisonis EV, Pyatnitskiy MA, Kopylov AT, Zgoda VG, Lisitsa AV, Archakov AI (2016) The size of the human proteome: the width and depth. Int J Anal Chem 2016:7436849CrossRefGoogle Scholar
  6. 6.
    Collins FS (2006) The language of god. Francis S. Collins on unveiling the human genome. Free Press, New York, p 1–3Google Scholar
  7. 7.
  8. 8.
    Gisler M (2010) The rise and fall of the human genome project. MIT Technology ReviewGoogle Scholar
  9. 9.
    Weston AD, Hood L (2004) Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J Proteome Res 3:179–196CrossRefGoogle Scholar
  10. 10.
    Butcher EC, Berg EL, Kunkel EJ (2004) Systems biology in drug discovery. Nat Biotechnol 22:1253–1259. https://doi.org/10.1038/nbt1017CrossRefPubMedGoogle Scholar
  11. 11.
    Perkins RC. Paul Kenis, Deborah Berthhold & Sarah-Ellen Leonard, University of Illinois, Urbana/Champaign; Jonathan Lee, recently of Eli Lily; and Ray Perkins, New Liberty ProteomicsGoogle Scholar
  12. 12.
    Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5(6):463–466CrossRefGoogle Scholar
  13. 13.
    Berger D (1999) A brief history of medical diagnosis and the birth of the clinical laboratory. MLO Med Lab Obs 31(7). 28–30, 32, 34–40Google Scholar
  14. 14.
  15. 15.
    Kuruc M (2017) Stroma liquid biopsy—biomarkers of the dysregulation of the serum proteome in cancer First presented at NJ cancer Retreat, May 25, 2017 New Brunswick, NJ USA. https://www.biotechsupportgroup.com/v/vspfiles/templates/257/pdf/NJ%20Cancer%20Retreat%20Stroma%20Liquid%20Biopsy%20Poster.pdf
  16. 16.
    Lowe D (2016) In the pipeline: precision oncology isn’t quite there yet Science Translational Medicine weblog, Lowe D (2016). http://blogs.sciencemag.org/pipeline/archives/2016/09/12/precision-oncology-isnt-quite-there-yet
  17. 17.
    Gigerenzer G (2014) Risk savvy. Penguin Group, New York, NYGoogle Scholar
  18. 18.
    Booth B, Zemmel R (2004) Opinion: prospects for productivity. Nat Rev Drug Discov 3:451–456. https://doi.org/10.1038/nrd1384CrossRefPubMedGoogle Scholar
  19. 19.
    Scannell JW, Blanckley A, Boldon H, Warrington B (2012) Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov 11. https://doi.org/10.1038/nrd3681CrossRefGoogle Scholar
  20. 20.
    Lawrence MS, Stoianov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499. https://doi.org/10.1038/nature12213CrossRefGoogle Scholar
  21. 21.
    Swinney D (2013) Phenotypic vs. target-based drug discovery for first-in-class medicines. Clin Pharmacol Ther 93(4):299–301CrossRefGoogle Scholar
  22. 22.
    Moffat JG, Vincent F, Lee JA, Eder J, Prunotto M (2017) Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat Rev Drug Discov 16:531–543. https://doi.org/10.1038/nrd.2017.111CrossRefPubMedGoogle Scholar
  23. 23.
    Bray M-A, Singh S, Han H, Davis CT, Borgeson B, Hartland C, Kost-Alimova M, Gustafsdottir SM, Gibson CC, Carpenter AE (2016) Cell painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat Protoc 11:1757–1774. https://doi.org/10.1038/nprot.2016.105CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Avior Y, Sagi I, Benvenisty N (2016) Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol 17. https://doi.org/10.1038/nrm.2015.27CrossRefGoogle Scholar
  25. 25.
    Esch EW, Bahinski A, Huh D (2015) Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 14(4). https://doi.org/10.1038/nrd4539CrossRefGoogle Scholar
  26. 26.
    Boran AD, Ivengar R (2010) Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Discov Devel 13(3):297–309PubMedPubMedCentralGoogle Scholar
  27. 27.
    Ashley EA (2016) Towards precision medicine. Nat Rev Genet 17. https://doi.org/10.1038/nrg.2016.86CrossRefGoogle Scholar
  28. 28.
    Bandolier (2007) The Oxford league table of analgesic efficacy. http://www.bandolier.org.uk/booth/painpag/Acutrev/Analgesics/lftab.htmlGoogle Scholar
  29. 29.
    Schork NJ (2015) Personalized medicine: time for one-person trials. Nature 520:609–611. https://doi.org/10.1038/520609aCrossRefPubMedGoogle Scholar
  30. 30.
    Prasad V (2016) Perspective: the precision-oncology illusion. Nat Biotechnol 537(S63). https://doi.org/10.1038/537S63aCrossRefGoogle Scholar
  31. 31.
    Brock A, Huang S (2017) Precision oncology: between vaguely right and precisely wrong. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-17-0448CrossRefGoogle Scholar
  32. 32.
    HUPO (2016) The human proteome project. https://hupo.org/human-proteome-projectGoogle Scholar
  33. 33.
    Zhang Y, Fonslow BR, Shan B, Baek M-C, Yates JR (2013) Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113(4):2343–2394. https://doi.org/10.1021/cr3003533CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Catherman AD, Skinner OS, Kelleher NL (2014) Top down proteomics: facts and perspectives. Biochem Biophys Res Commun 445(4):683–693. https://doi.org/10.1016/j.bbrc.2014.02.041CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Solier C, Langen H (2014) Antibody-based proteomics and biomarker research—current status and limitations. Proteomics 14(6):774–783. https://doi.org/10.1002/pmic.201300334CrossRefPubMedGoogle Scholar
  36. 36.
    Wasinger VC, Zeng M, Yau Y (2013) Current status and advances in quantitative proteomic mass spectrometry. Int J Proteomics 2013:180605CrossRefGoogle Scholar
  37. 37.
    Wolf-Yadlin A, Hautaniemi S, Lauffenbuger DA, White FM (2007) Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc Natl Acad Sci U S A 104(14):5860–5865. https://doi.org/10.1073/pnas.0608638104CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242CrossRefGoogle Scholar
  39. 39.
    Wang H, Wang J (2017) How cryo-electron microscopy and X-ray crystallography complement each other. Protein Sci 26(1):32–39. https://doi.org/10.1002/pro.3022CrossRefPubMedGoogle Scholar
  40. 40.
  41. 41.
    Claxton DP, Kazmier K, Mishra S, Mchaourab HS (2015) Navigating membrane protein structure, dynamics, and energy landscapes using spin labeling and EPR spectroscopy. Methods Enzymol 564:349–387. https://doi.org/10.1016/bs.mie.2015.07.026CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yang Y, Ramelot TA, McCarrick RM, Ni S, Feldmann EA et al (2010) Combining NMR and EPR methods for Homodimer protein structure determination. J Am Chem Soc 132(34). https://doi.org/10.1021/ja105080hCrossRefGoogle Scholar
  43. 43.
    Stadler C, Rexhepaj E, Singan VR, Murphy RF, Pepperkok R, Uhlén M, Simpson JC, Lundberg E (2013) Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. Nat Methods 10:315–323. https://doi.org/10.1038/nmeth.2377CrossRefPubMedGoogle Scholar
  44. 44.
    von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P (2002) Comparative assessment of large-scale data sets of protein–protein interactions. Nat Biotechnol 417:399–403Google Scholar
  45. 45.
    Braun P, Tasan M, Dreze M, Barrios-Rodiles M, Lemmens I, Yu H, Sahalie JM, Murray RR, Roncari L, A-Sd S, Venkatesan K, Rual J-F, Cusick ME, Pawson T, Hill DE, Tavernier J, Wrana JL, Roth FP, Vidal M (2009) An experimentally derived confidence score for binary protein-protein interactions. Nat Methods 6(1):91–97. https://doi.org/10.1038/nmeth.1281CrossRefPubMedGoogle Scholar
  46. 46.
    Rao VS, Srinivas K, Sujini GN, Kumar GNS (2014) Protein-protein interaction detection: methods and analysis. Int J Proteomics 2014:12. https://doi.org/10.1155/2014/147648CrossRefGoogle Scholar
  47. 47.
    Klare J (2013) Site-directed spin labeling EPR spectroscopy in protein research. Biol Chem 394(10):1281–1300. https://doi.org/10.1515/hsz-2013-0155JCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.New Liberty Proteomics CorporationNew LibertyUSA

Personalised recommendations