Mapping and Quantification of tRNA 2′-O-Methylation by RiboMethSeq

  • Adeline Galvanin
  • Lilia Ayadi
  • Mark Helm
  • Yuri Motorin
  • Virginie Marchand
Part of the Methods in Molecular Biology book series (MIMB, volume 1870)


Current development of epitranscriptomics field requires efficient experimental protocols for precise mapping and quantification of various modified nucleotides in RNA. Despite important advances in the field during the last 10 years, this task is still extremely laborious and time-consuming, even when high-throughput analytical approaches are employed. Moreover, only a very limited subset of RNA modifications can be detected and only rarely be quantified by these powerful techniques. In the past, we developed and successfully applied alkaline fragmentation-based RiboMethSeq approach for mapping and precise quantification of multiple 2′-O-methylation residues in ribosomal RNA. Here we describe a RiboMethSeq protocol adapted for the analysis of bacterial and eukaryotic tRNA species, which also contain 2′-O-methylations at functionally important RNA regions.

Key words

2′-O-Methylation High-throughput sequencing tRNA modification Ribose methylation Alkaline fragmentation 



This work was supported by joint ANR-DFG grant HTRNAMod (ANR-13-ISV8-0001/HE 3397/8-1) to MH and YM, and AO Lorraine University-Lorraine Region “Aberrant RNA methylation in cancer” funding to YM.


  1. 1.
    Helm M, Alfonzo JD (2014) Posttranscriptional RNA modifications: playing metabolic games in a cell’s chemical Legoland. Chem Biol 21(2):174–185CrossRefGoogle Scholar
  2. 2.
    Helm M, Motorin Y (2017) Detecting RNA modifications in the epitranscriptome: predict and validate. Nat Rev Genet 18(5):275–291CrossRefGoogle Scholar
  3. 3.
    Rana AK, Ankri S (2016) Reviving the RNA world: an insight into the appearance of RNA methyltransferases. Front Genet 7:99CrossRefGoogle Scholar
  4. 4.
    Towns WL, Begley TJ (2012) Transfer RNA methytransferases and their corresponding modifications in budding yeast and humans: activities, predications, and potential roles in human health. DNA Cell Biol 31(4):434–454CrossRefGoogle Scholar
  5. 5.
    Motorin Y, Helm M (2011) RNA nucleotide methylation. Wiley Interdiscip Rev RNA 2(5):611–631CrossRefGoogle Scholar
  6. 6.
    Gilbert WV, Bell TA, Schaening C (2016) Messenger RNA modifications: form, distribution, and function. Science 352(6292):1408–1412CrossRefGoogle Scholar
  7. 7.
    Yue Y, Liu J, He C (2015) RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev 29(13):1343–1355CrossRefGoogle Scholar
  8. 8.
    Sarin LP, Leidel SA (2014) Modify or die?—RNA modification defects in metazoans. RNA Biol 11(12):1555–1567CrossRefGoogle Scholar
  9. 9.
    Maden BE (2000) Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. Biochem J 350(Pt 3):609–629CrossRefGoogle Scholar
  10. 10.
    Maden BE (2001) Mapping 2′-O-methyl groups in ribosomal RNA. Methods 25(3):374–382CrossRefGoogle Scholar
  11. 11.
    Yu YT, Shu MD, Steitz JA (1997) A new method for detecting sites of 2′-O-methylation in RNA molecules. RNA 3(3):324–331PubMedPubMedCentralGoogle Scholar
  12. 12.
    Dong Z-W, Shao P, Diao L-T, Zhou H, Yu C-H, Qu L-H (2012) RTL-P: a sensitive approach for detecting sites of 2′-O-methylation in RNA molecules. Nucleic Acids Res 40(20):e157CrossRefGoogle Scholar
  13. 13.
    Chan CTY, Dyavaiah M, DeMott MS, Taghizadeh K, Dedon PC, Begley TJ (2010) A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet [Internet] [cited 2017 May 17];6(12)Google Scholar
  14. 14.
    Marchand V, Ayadi L, El Hajj A, Blanloeil-Oillo F, Helm M, Motorin Y (2017) High-throughput mapping of 2′-O-Me residues in RNA using next-generation sequencing (illumina RiboMethSeq protocol). Methods Mol Biol 1562:171–187CrossRefGoogle Scholar
  15. 15.
    Marchand V, Blanloeil-Oillo F, Helm M, Motorin Y (2016) Illumina-based RiboMethSeq approach for mapping of 2′-O-Me residues in RNA. Nucleic Acids Res 44(16):e135CrossRefGoogle Scholar
  16. 16.
    Marchand V, Pichot F, Thüring K, Ayadi L, Freund I, Dalpke A et al (2017) Next-generation sequencing-based RiboMethSeq protocol for analysis of tRNA 2′-O-methylation. Biomolecules [Internet] [cited 2017 Jul 12];7(1)Google Scholar
  17. 17.
    Schmitt ME, Brown TA, Trumpower BL (1990) A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18(10):3091–3092CrossRefGoogle Scholar
  18. 18.
    Wilfinger WW, Mackey K, Chomczynski P (1997) Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. BioTechniques 22(3):474–476, 478–481CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Adeline Galvanin
    • 1
  • Lilia Ayadi
    • 1
  • Mark Helm
    • 2
  • Yuri Motorin
    • 1
    • 3
  • Virginie Marchand
    • 4
  1. 1.IMoPA UMR7365 CNRS-UL, BioPole Lorraine UniversityNancyFrance
  2. 2.Institute of Pharmacy and BiochemistryJohannes Gutenberg University MainzMainzGermany
  3. 3.Next-Generation Sequencing Core Facility, FR3209 BMCT, CNRS-UL, BioPole Lorraine UniversityNancyFrance
  4. 4.Next-Generation Sequencing Core Facility, UMS2008 IBSlor, CNRS-UL-INSERM, BioPole Lorraine UniversityNancyFrance

Personalised recommendations