Skip to main content

Cell Cycle Dynamics in Glioma Cancer Stem Cells

  • Protocol
  • First Online:
Brain Tumor Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1869))

Abstract

Cancer stem cells, sometimes referred to as tumor initiating cells, play pivotal roles in tumor initiation, progression, metastasis, resistance to therapy, and relapse. Understanding how these populations of cells expand in response to a host of conditions is critical in determining effective cancer therapeutics. A defining feature of cancer stem cells is the ability to switch between modes of quiescence and symmetric/asymmetric division to protect and conserve the population, this feature is traditionally reserved for normal adult stem cell populations. Understanding how the core cell cycle machinery responds to external cues to drive symmetric/asymmetric division vs. quiescence will reveal fundamental information about how cancer stem cell populations survive and expand. This chapter will describe methods to study the cell cycle dynamics in brain cancer stem cell populations and how they compare to the other populations in a tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Venere M, Fine HA, Dirks PB, Rich JN (2011) Cancer stem cells in gliomas: identifying and understanding the apex cell in cancer’s hierarchy. Glia 59:1148–1154

    Article  Google Scholar 

  2. Alvarez-Buylla A, Lim D (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41:683–686

    Article  CAS  Google Scholar 

  3. Guilak F, Cohen D, Estes B, Gimble J, Liedtke W et al (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5:17–26

    Article  CAS  Google Scholar 

  4. Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327:542–545

    Article  CAS  Google Scholar 

  5. Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441:1068–1074

    Article  CAS  Google Scholar 

  6. Shen Q, Goderie SK, Jin L, Karanth N, Sun Y et al (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340

    Article  CAS  Google Scholar 

  7. Shahriyari L, Komarova NL (2013) Symmetric vs. asymmetric stem cell divisions: an adaptation against cancer? PLoS One 8(10):e76195

    Article  CAS  Google Scholar 

  8. Yatabe Y, Tavaré S, Shibata D (2001) Investigating stem cells in human colon by using 618 methylation patterns. Proc Natl Acad Sci 98:10839–10844

    Article  CAS  Google Scholar 

  9. Spradling A, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414:98–104

    Article  CAS  Google Scholar 

  10. Nicolas P, Kim KM, Shibata D, Tavaré S (2007) The stem cell population of the human colon crypt: analysis via methylation patterns. PLoS Comput Biol 3:e28

    Article  Google Scholar 

  11. Norbury C, Nurse P (1992) Animal cell cycles and their control. Annu Rev Biochem 61:441–470

    Article  CAS  Google Scholar 

  12. Zetterber A, Larsson O, Wiman KG (1995) What is the restriction point? Curr Opin Cell Biol 7(6):835–842

    Article  Google Scholar 

  13. Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14:329–340

    Article  CAS  Google Scholar 

  14. Moore N, Lyle S (2011) Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol 2011:396076

    Article  Google Scholar 

  15. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci 100(25):15178–15183

    Article  CAS  Google Scholar 

  16. Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39(3):193–206

    Article  Google Scholar 

  17. Rosenblum ML, Gerosa M, Dougherty DV, Reese C, Barger GR, Davis RL, Levin VA, Wilson CB (1982) Age-related chemosensitivity of stem cells from human malignant brain tumours. Lancet 1(8277):885–887

    Article  CAS  Google Scholar 

  18. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of cancer stem cells in human brain tumors. Cancer Res 63(18):5821–5828

    CAS  PubMed  Google Scholar 

  19. Campos B, Gal Z, Baader A, Schneider T, Sliwinski C, Gassel K (2014) Aberrant self-renewal and quiescence contribute to the aggressiveness of glioblastoma. J Pathol 234:23–33

    Article  Google Scholar 

  20. Brescia P, Ortensi B, Fornasari L, Levi D, Broggi G, Pelicci G (2013) CD133 is essential for glioblastoma stem cell maintenance. Stem Cells 31:857–869

    Article  CAS  Google Scholar 

  21. Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, Lichter P, Unterberg A, Radlwimmer B, Herold-Mende CC (2008) Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 14:123–129

    Article  CAS  Google Scholar 

  22. Han M, Guo L, Zhang Y, Huang B, Chen A, Chen W, Liu X, Sun S, Wang K, Liu A, Li X (2016) Clinicopathological and prognostic significance of CD133 in Glioma patients: a meta-analysis. Mol Neurobiol 53:720–727

    Article  CAS  Google Scholar 

  23. Son MJ, Woolard K, Nam DH, Lee J, Fine HA (2009) SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4:440–452

    Article  CAS  Google Scholar 

  24. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67

    Article  Google Scholar 

  25. Brown DV, Filiz G, Daniel PM, Hollande F, Dworkin S et al (2017) Expression of CD133 and CD44 in glioblastoma stem cells correlates with cell proliferation, phenotype stability and intra-tumor heterogeneity. PLoS One 12(2):e0172791

    Article  Google Scholar 

  26. Bleau AM et al (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226–235

    Article  CAS  Google Scholar 

  27. Darzynkiewicz Z, Huang X (2004) Analysis of cellular DNA content by flow cytometry. Curr Protoc Immunol 5:7 Chapter 5: Unit

    PubMed  Google Scholar 

  28. Kim KH, Sederstrom JM (2015) Assaying cell cycle status using flow cytometry. Curr Protoc Mol Biol 111:28.6.1–28.6.11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa A. Porter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Qemo, I., Porter, L.A. (2019). Cell Cycle Dynamics in Glioma Cancer Stem Cells. In: Singh, S., Venugopal, C. (eds) Brain Tumor Stem Cells. Methods in Molecular Biology, vol 1869. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8805-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8805-1_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8804-4

  • Online ISBN: 978-1-4939-8805-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics