Delivery of Superoxide Dismutase Using Cys2-His2 Zinc-Finger Proteins

  • Jia Liu
  • Jiangmei Li
  • Jie Li
  • Lianhui Zhu
  • Shaojie Wang
  • Xuan Wei
  • Peixiang MaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1867)


Therapeutic proteins have shown great potential in treating life-threatening diseases, but the hydrophilicity and high molecular weight hamper their passing through the cell membrane. Cell-penetrating peptide (CPP)-assisted protein delivery is a simple and efficacious strategy to promote the cellular uptake of therapeutic proteins. We recently demonstrated that the engineered Cys2-His2 zinc-finger domains possess intrinsic cell permeability, which could be leveraged for intracellular protein delivery. Here we applied this method to deliver superoxide dismutase (SOD), a therapeutic protein widely used in preclinical and clinical studies. We present a protocol for the production and delivery of zinc-finger domain-fused SOD. This protocol can be extended for delivering other therapeutic proteins.

Key words

Cell-penetrating peptides Protein delivery Superoxide dismutase Zinc-finger proteins 



This work was supported by ShanghaiTech University, the National Natural Science Foundation of China (31500632 to P. Ma), and National Natural Science Foundation of China (31600686 to J. Liu).


  1. 1.
    Rehman K, Hamid Akash MS, Akhtar B, Tariq M, Mahmood A, Ibrahim M (2016) Delivery of therapeutic proteins: challenges and strategies. Curr Drug Targets 17:1172–1188CrossRefPubMedGoogle Scholar
  2. 2.
    van den Berg A, Dowdy SF (2011) Protein transduction domain delivery of therapeutic macromolecules. Curr Opin Biotechnol 22:888–893CrossRefPubMedGoogle Scholar
  3. 3.
    Lindsay MA (2002) Peptide-mediated cell delivery: application in protein target validation. Curr Opin Pharmacol 2:587–594CrossRefPubMedGoogle Scholar
  4. 4.
    Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18:33–37CrossRefPubMedGoogle Scholar
  5. 5.
    Guo X, Huang L (2012) Recent advances in nonviral vectors for gene delivery. Acc Chem Res 45:971–979CrossRefPubMedGoogle Scholar
  6. 6.
    Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358CrossRefPubMedGoogle Scholar
  7. 7.
    Copolovici DM, Langel K, Eriste E, Langel U (2014) Cell-penetrating peptides: design, synthesis, and applications. ACS Nano 8:1972–1994CrossRefPubMedGoogle Scholar
  8. 8.
    Fuchs SM, Raines RT (2007) Arginine grafting to endow cell permeability. ACS Chem Biol 2:167–170CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cronican JJ, Thompson DB, Beier KT, McNaughton BR, Cepko CL, Liu DR (2010) Potent delivery of functional proteins into mammalian cells in vitro and in vivo using a supercharged protein. ACS Chem Biol 5:747–752CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347CrossRefPubMedGoogle Scholar
  11. 11.
    Zelphati O, Wang Y, Kitada S, Reed JC, Felgner PL, Corbeil J (2001) Intracellular delivery of proteins with a new lipid-mediated delivery system. J Biol Chem 276:35103–35110CrossRefPubMedGoogle Scholar
  12. 12.
    Kaczmarczyk SJ, Sitaraman K, Young HA, Hughes SH, Chatterjee DK (2011) Protein delivery using engineered virus-like particles. Proc Natl Acad Sci U S A 108:16998–17003CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Voelkel C, Galla M, Maetzig T, Warlich E, Kuehle J, Zychlinski D, Bode J, Cantz T, Schambach A, Baum C (2010) Protein transduction from retroviral Gag precursors. Proc Natl Acad Sci U S A 107:7805–7810CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sinha VR, Trehan A (2003) Biodegradable microspheres for protein delivery. J Control Release 90:261–280CrossRefPubMedGoogle Scholar
  15. 15.
    Liu J, Gaj T, Patterson JT, Sirk SJ, Barbas CF 3rd (2014) Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One 9:e85755CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H (2014) Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 24:1020–1027CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fuchs SM, Raines RT (2005) Polyarginine as a multifunctional fusion tag. Protein Sci 14:1538–1544CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mai JC, Shen H, Watkins SC, Cheng T, Robbins PD (2002) Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J Biol Chem 277:30208–30218CrossRefPubMedGoogle Scholar
  19. 19.
    Al-Taei S, Penning NA, Simpson JC, Futaki S, Takeuchi T, Nakase I, Jones AT (2006) Intracellular traffic and fate of protein transduction domains HIV-1 TAT peptide and octaarginine. Implications for their utilization as drug delivery vectors. Bioconjug Chem 17:90–100CrossRefPubMedGoogle Scholar
  20. 20.
    Jones SW, Christison R, Bundell K, Voyce CJ, Brockbank SM, Newham P, Lindsay MA (2005) Characterisation of cell-penetrating peptide-mediated peptide delivery. Br J Pharmacol 145:1093–1102CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193CrossRefGoogle Scholar
  22. 22.
    Elliott G, O'Hare P (1997) Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88:223–233CrossRefPubMedGoogle Scholar
  23. 23.
    Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450PubMedGoogle Scholar
  24. 24.
    Hamley IW (2017) Small bioactive peptides for biomaterials design and therapeutics. Chem Rev 117:14015–14041CrossRefPubMedGoogle Scholar
  25. 25.
    Smith BA, Daniels DS, Coplin AE, Jordan GE, McGregor LM, Schepartz A (2008) Minimally cationic cell-permeable miniature proteins via alpha-helical arginine display. J Am Chem Soc 130:2948–2949CrossRefPubMedGoogle Scholar
  26. 26.
    Daniels DS, Schepartz A (2007) Intrinsically cell-permeable miniature proteins based on a minimal cationic PPII motif. J Am Chem Soc 129:14578–14579CrossRefPubMedGoogle Scholar
  27. 27.
    Karagiannis ED, Urbanska AM, Sahay G, Pelet JM, Jhunjhunwala S, Langer R, Anderson DG (2013) Rational design of a biomimetic cell penetrating peptide library. ACS Nano 7:8616–8626CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gao S, Simon MJ, Hue CD, Morrison B 3rd, Banta S (2011) An unusual cell penetrating peptide identified using a plasmid display-based functional selection platform. ACS Chem Biol 6:484–491CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Heitz F, Morris MC, Divita G (2009) Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 157:195–206CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gaj T, Liu J (2015) Direct protein delivery to mammalian cells using cell-permeable Cys2-His2 zinc-finger domains. J Vis Exp 97:52814Google Scholar
  31. 31.
    Gaj T, Liu J, Anderson KE, Sirk SJ, Barbas CF 3rd (2014) Protein delivery using Cys2-His2 zinc-finger domains. ACS Chem Biol 9:1662–1667CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Liu J, Gaj T, Wallen MC, Barbas CF 3rd (2015) Improved cell-penetrating zinc-finger nuclease proteins for precision genome engineering. Mol Ther Nucleic Acids 4:e232CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gaj T, Guo J, Kato Y, Sirk SJ, Barbas CF 3rd (2012) Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods 9:805–807CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Liu J, Shui SL (2016) Delivery methods for site-specific nucleases: achieving the full potential of therapeutic gene editing. J Control Release 244:83–97CrossRefPubMedGoogle Scholar
  35. 35.
    Liu J, Gaj T, Yang Y, Wang N, Shui S, Kim S, Kanchiswamy CN, Kim JS, Barbas CF 3rd (2015) Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nat Protoc 10:1842–1859CrossRefPubMedGoogle Scholar
  36. 36.
    Salvemini D, Riley DP, Cuzzocrea S (2002) SOD mimetics are coming of age. Nat Rev Drug Discov 1:367–374CrossRefPubMedGoogle Scholar
  37. 37.
    Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112CrossRefPubMedGoogle Scholar
  38. 38.
    Maxwell SRJ (1995) Prospects for the use of antioxidant therapies. Drugs 49:345–361CrossRefPubMedGoogle Scholar
  39. 39.
    McCord JM (1974) Free radicals and inflammation: protection of synovial fluid by superoxide dismutase. Science 185:529–531CrossRefPubMedGoogle Scholar
  40. 40.
    McCord JM (1986) Superoxide dismutase: rationale for use in reperfusion injury and inflammation. J Free Radic Biol Med 2:307–310CrossRefPubMedGoogle Scholar
  41. 41.
    Yang G, Chan PH, Chen J, Carlson E, Chen SF, Weinstein P, Epstein CJ, Kamii H (1994) Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25:165–170CrossRefPubMedGoogle Scholar
  42. 42.
    Land W, Zweler JL (1997) Prevention of reperfusion-induced, free radical-mediated acute endothelial injury by superoxide dismutase as an effective tool to delay/prevent chronic renal allograft failure: a review. Transplant Proc 29:2567–2568CrossRefPubMedGoogle Scholar
  43. 43.
    Shingu M, Takahashi S, Ito M, Hamamatu N, Suenaga Y, Ichibangase Y, Nobunaga M (1994) Anti-inflammatory effects of recombinant human manganese superoxide dismutase on adjuvant arthritis in rats. Rheumatol Int 14:77–81CrossRefPubMedGoogle Scholar
  44. 44.
    Droy-Lefaix MT, Drouet Y, Geraud G, Hosford D, Braquet P (1991) Superoxide dismutase (SOD) and the PAF-antagonist (BN 52021) reduce small intestinal damage induced by ischemia-reperfusion. Free Radic Res Commun 12-13(Pt 2):725–735CrossRefGoogle Scholar
  45. 45.
    Federica De Lazzari, Alexander J Whitworth, Marco Bisaglia (2017) Superoxide radical dismutation as new therapeutic strategy in Parkinson’s disease. Aging Dis
  46. 46.
    Church SL, Grant JW, Ridnour LA, Oberley LW, Swanson PE, Meltzer PS, Trent JM (1993) Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc Natl Acad Sci U S A 90:3113–3117CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bravard A, Sabatier L, Hoffschir F, Ricoul M, Luccioni C, Dutrillaux B (1992) SOD2: a new type of tumor-suppressor gene? Int J Cancer 51:476–480CrossRefPubMedGoogle Scholar
  48. 48.
    Safford SE, Oberley TD, Urano M, St Clair DK (1994) Suppression of fibrosarcoma metastasis by elevated expression of manganese superoxide dismutase. Cancer Res 54:4261–4265PubMedGoogle Scholar
  49. 49.
    Yoshizaki N, Mogi Y, Muramatsu H, Koike K, Kogawa K, Niitsu Y (1994) Suppressive effect of recombinant human Cu, Zn-superoxide dismutase on lung metastasis of murine tumor cells. Int J Cancer 57:287–292CrossRefPubMedGoogle Scholar
  50. 50.
    Mollace V, Nottet HS, Clayette P, Turco MC, Muscoli C, Salvemini D, Perno CF (2001) Oxidative stress and neuroAIDS: triggers, modulators and novel antioxidants. Trends Neurosci 24:411–416CrossRefPubMedGoogle Scholar
  51. 51.
    Flores SC, Marecki JC, Harper KP, Bose SK, Nelson SK, McCord JM (1993) Tat protein of human immunodeficiency virus type 1 represses expression of manganese superoxide dismutase in HeLa cells. Proc Natl Acad Sci U S A 90:7632–7636CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jia Liu
    • 1
  • Jiangmei Li
    • 1
  • Jie Li
    • 1
  • Lianhui Zhu
    • 1
  • Shaojie Wang
    • 1
  • Xuan Wei
    • 1
  • Peixiang Ma
    • 1
    Email author
  1. 1.Shanghai Institute for Advanced Immunochemical Studies (SIAIS)ShanghaiTech UniversityShanghaiChina

Personalised recommendations