Skip to main content

Delivery of Superoxide Dismutase Using Cys2-His2 Zinc-Finger Proteins

  • Protocol
  • First Online:
Zinc Finger Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1867))

Abstract

Therapeutic proteins have shown great potential in treating life-threatening diseases, but the hydrophilicity and high molecular weight hamper their passing through the cell membrane. Cell-penetrating peptide (CPP)-assisted protein delivery is a simple and efficacious strategy to promote the cellular uptake of therapeutic proteins. We recently demonstrated that the engineered Cys2-His2 zinc-finger domains possess intrinsic cell permeability, which could be leveraged for intracellular protein delivery. Here we applied this method to deliver superoxide dismutase (SOD), a therapeutic protein widely used in preclinical and clinical studies. We present a protocol for the production and delivery of zinc-finger domain-fused SOD. This protocol can be extended for delivering other therapeutic proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rehman K, Hamid Akash MS, Akhtar B, Tariq M, Mahmood A, Ibrahim M (2016) Delivery of therapeutic proteins: challenges and strategies. Curr Drug Targets 17:1172–1188

    Article  CAS  PubMed  Google Scholar 

  2. van den Berg A, Dowdy SF (2011) Protein transduction domain delivery of therapeutic macromolecules. Curr Opin Biotechnol 22:888–893

    Article  CAS  PubMed  Google Scholar 

  3. Lindsay MA (2002) Peptide-mediated cell delivery: application in protein target validation. Curr Opin Pharmacol 2:587–594

    Article  CAS  PubMed  Google Scholar 

  4. Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18:33–37

    Article  CAS  PubMed  Google Scholar 

  5. Guo X, Huang L (2012) Recent advances in nonviral vectors for gene delivery. Acc Chem Res 45:971–979

    Article  CAS  PubMed  Google Scholar 

  6. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358

    Article  CAS  PubMed  Google Scholar 

  7. Copolovici DM, Langel K, Eriste E, Langel U (2014) Cell-penetrating peptides: design, synthesis, and applications. ACS Nano 8:1972–1994

    Article  CAS  PubMed  Google Scholar 

  8. Fuchs SM, Raines RT (2007) Arginine grafting to endow cell permeability. ACS Chem Biol 2:167–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cronican JJ, Thompson DB, Beier KT, McNaughton BR, Cepko CL, Liu DR (2010) Potent delivery of functional proteins into mammalian cells in vitro and in vivo using a supercharged protein. ACS Chem Biol 5:747–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    Article  CAS  PubMed  Google Scholar 

  11. Zelphati O, Wang Y, Kitada S, Reed JC, Felgner PL, Corbeil J (2001) Intracellular delivery of proteins with a new lipid-mediated delivery system. J Biol Chem 276:35103–35110

    Article  CAS  PubMed  Google Scholar 

  12. Kaczmarczyk SJ, Sitaraman K, Young HA, Hughes SH, Chatterjee DK (2011) Protein delivery using engineered virus-like particles. Proc Natl Acad Sci U S A 108:16998–17003

    Article  PubMed  PubMed Central  Google Scholar 

  13. Voelkel C, Galla M, Maetzig T, Warlich E, Kuehle J, Zychlinski D, Bode J, Cantz T, Schambach A, Baum C (2010) Protein transduction from retroviral Gag precursors. Proc Natl Acad Sci U S A 107:7805–7810

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sinha VR, Trehan A (2003) Biodegradable microspheres for protein delivery. J Control Release 90:261–280

    Article  CAS  PubMed  Google Scholar 

  15. Liu J, Gaj T, Patterson JT, Sirk SJ, Barbas CF 3rd (2014) Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One 9:e85755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H (2014) Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 24:1020–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fuchs SM, Raines RT (2005) Polyarginine as a multifunctional fusion tag. Protein Sci 14:1538–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mai JC, Shen H, Watkins SC, Cheng T, Robbins PD (2002) Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J Biol Chem 277:30208–30218

    Article  CAS  PubMed  Google Scholar 

  19. Al-Taei S, Penning NA, Simpson JC, Futaki S, Takeuchi T, Nakase I, Jones AT (2006) Intracellular traffic and fate of protein transduction domains HIV-1 TAT peptide and octaarginine. Implications for their utilization as drug delivery vectors. Bioconjug Chem 17:90–100

    Article  CAS  PubMed  Google Scholar 

  20. Jones SW, Christison R, Bundell K, Voyce CJ, Brockbank SM, Newham P, Lindsay MA (2005) Characterisation of cell-penetrating peptide-mediated peptide delivery. Br J Pharmacol 145:1093–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193

    Article  CAS  Google Scholar 

  22. Elliott G, O'Hare P (1997) Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88:223–233

    Article  CAS  PubMed  Google Scholar 

  23. Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450

    PubMed  CAS  Google Scholar 

  24. Hamley IW (2017) Small bioactive peptides for biomaterials design and therapeutics. Chem Rev 117:14015–14041

    Article  CAS  PubMed  Google Scholar 

  25. Smith BA, Daniels DS, Coplin AE, Jordan GE, McGregor LM, Schepartz A (2008) Minimally cationic cell-permeable miniature proteins via alpha-helical arginine display. J Am Chem Soc 130:2948–2949

    Article  CAS  PubMed  Google Scholar 

  26. Daniels DS, Schepartz A (2007) Intrinsically cell-permeable miniature proteins based on a minimal cationic PPII motif. J Am Chem Soc 129:14578–14579

    Article  CAS  PubMed  Google Scholar 

  27. Karagiannis ED, Urbanska AM, Sahay G, Pelet JM, Jhunjhunwala S, Langer R, Anderson DG (2013) Rational design of a biomimetic cell penetrating peptide library. ACS Nano 7:8616–8626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gao S, Simon MJ, Hue CD, Morrison B 3rd, Banta S (2011) An unusual cell penetrating peptide identified using a plasmid display-based functional selection platform. ACS Chem Biol 6:484–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heitz F, Morris MC, Divita G (2009) Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 157:195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gaj T, Liu J (2015) Direct protein delivery to mammalian cells using cell-permeable Cys2-His2 zinc-finger domains. J Vis Exp 97:52814

    Google Scholar 

  31. Gaj T, Liu J, Anderson KE, Sirk SJ, Barbas CF 3rd (2014) Protein delivery using Cys2-His2 zinc-finger domains. ACS Chem Biol 9:1662–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu J, Gaj T, Wallen MC, Barbas CF 3rd (2015) Improved cell-penetrating zinc-finger nuclease proteins for precision genome engineering. Mol Ther Nucleic Acids 4:e232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gaj T, Guo J, Kato Y, Sirk SJ, Barbas CF 3rd (2012) Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods 9:805–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu J, Shui SL (2016) Delivery methods for site-specific nucleases: achieving the full potential of therapeutic gene editing. J Control Release 244:83–97

    Article  CAS  PubMed  Google Scholar 

  35. Liu J, Gaj T, Yang Y, Wang N, Shui S, Kim S, Kanchiswamy CN, Kim JS, Barbas CF 3rd (2015) Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nat Protoc 10:1842–1859

    Article  CAS  PubMed  Google Scholar 

  36. Salvemini D, Riley DP, Cuzzocrea S (2002) SOD mimetics are coming of age. Nat Rev Drug Discov 1:367–374

    Article  CAS  PubMed  Google Scholar 

  37. Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  CAS  PubMed  Google Scholar 

  38. Maxwell SRJ (1995) Prospects for the use of antioxidant therapies. Drugs 49:345–361

    Article  CAS  PubMed  Google Scholar 

  39. McCord JM (1974) Free radicals and inflammation: protection of synovial fluid by superoxide dismutase. Science 185:529–531

    Article  CAS  PubMed  Google Scholar 

  40. McCord JM (1986) Superoxide dismutase: rationale for use in reperfusion injury and inflammation. J Free Radic Biol Med 2:307–310

    Article  CAS  PubMed  Google Scholar 

  41. Yang G, Chan PH, Chen J, Carlson E, Chen SF, Weinstein P, Epstein CJ, Kamii H (1994) Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25:165–170

    Article  PubMed  Google Scholar 

  42. Land W, Zweler JL (1997) Prevention of reperfusion-induced, free radical-mediated acute endothelial injury by superoxide dismutase as an effective tool to delay/prevent chronic renal allograft failure: a review. Transplant Proc 29:2567–2568

    Article  CAS  PubMed  Google Scholar 

  43. Shingu M, Takahashi S, Ito M, Hamamatu N, Suenaga Y, Ichibangase Y, Nobunaga M (1994) Anti-inflammatory effects of recombinant human manganese superoxide dismutase on adjuvant arthritis in rats. Rheumatol Int 14:77–81

    Article  CAS  PubMed  Google Scholar 

  44. Droy-Lefaix MT, Drouet Y, Geraud G, Hosford D, Braquet P (1991) Superoxide dismutase (SOD) and the PAF-antagonist (BN 52021) reduce small intestinal damage induced by ischemia-reperfusion. Free Radic Res Commun 12-13(Pt 2):725–735

    Article  CAS  Google Scholar 

  45. Federica De Lazzari, Alexander J Whitworth, Marco Bisaglia (2017) Superoxide radical dismutation as new therapeutic strategy in Parkinson’s disease. Aging Dis http://www.aginganddisease.org/EN/10.14336/AD.2017.1018#1

  46. Church SL, Grant JW, Ridnour LA, Oberley LW, Swanson PE, Meltzer PS, Trent JM (1993) Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc Natl Acad Sci U S A 90:3113–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bravard A, Sabatier L, Hoffschir F, Ricoul M, Luccioni C, Dutrillaux B (1992) SOD2: a new type of tumor-suppressor gene? Int J Cancer 51:476–480

    Article  CAS  PubMed  Google Scholar 

  48. Safford SE, Oberley TD, Urano M, St Clair DK (1994) Suppression of fibrosarcoma metastasis by elevated expression of manganese superoxide dismutase. Cancer Res 54:4261–4265

    PubMed  CAS  Google Scholar 

  49. Yoshizaki N, Mogi Y, Muramatsu H, Koike K, Kogawa K, Niitsu Y (1994) Suppressive effect of recombinant human Cu, Zn-superoxide dismutase on lung metastasis of murine tumor cells. Int J Cancer 57:287–292

    Article  CAS  PubMed  Google Scholar 

  50. Mollace V, Nottet HS, Clayette P, Turco MC, Muscoli C, Salvemini D, Perno CF (2001) Oxidative stress and neuroAIDS: triggers, modulators and novel antioxidants. Trends Neurosci 24:411–416

    Article  CAS  PubMed  Google Scholar 

  51. Flores SC, Marecki JC, Harper KP, Bose SK, Nelson SK, McCord JM (1993) Tat protein of human immunodeficiency virus type 1 represses expression of manganese superoxide dismutase in HeLa cells. Proc Natl Acad Sci U S A 90:7632–7636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by ShanghaiTech University, the National Natural Science Foundation of China (31500632 to P. Ma), and National Natural Science Foundation of China (31600686 to J. Liu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peixiang Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, J. et al. (2018). Delivery of Superoxide Dismutase Using Cys2-His2 Zinc-Finger Proteins. In: Liu, J. (eds) Zinc Finger Proteins. Methods in Molecular Biology, vol 1867. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8799-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8799-3_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8798-6

  • Online ISBN: 978-1-4939-8799-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics