Clinical Studies of Methionine-Restricted Diets for Cancer Patients

Part of the Methods in Molecular Biology book series (MIMB, volume 1866)


Methionine (MET) restriction (MR) has been shown to arrest cancer growth and sensitizes tumors to chemotherapy. MR total parenteral nutrition (MR TPN) with a chemotherapy-containing amino acid solution (“AO-90”) (lacking both MET and L-cysteine[CYS]) showed synergistic effects with 5-fluorouracil (5-FU) in tumor-bearing rats and in a Phase I clinical trial with gastrointestinal tract cancers compared to 5-FU in a MET-containing TPN. All gastric cancer patients underwent gastrectomy. Resected tumors in the AO-90 group showed significant reduction of cancer histologically, while almost no effect was seen in the control group. A Phase II clinical trial of dietary MR combined with cystemustine treatment for melanoma or glioma was carried out. Twenty-two patients (20 with metastatic melanoma and 2 with recurrent gloma) received a median of four cycles of the combination of a 1-day MR diet with cystemustine (60 mg/m2) every 2 weeks. This combination was well tolerated (toxicity and nutritional status). The median disease-free survival was 1.8 months and the median survival was 4.6 months, with two long-duration stabilizations. MET depletion in plasma was 40%. In another study, eight patients with a variety of metastatic solid tumors were enrolled in a Phase I clinical trial of a commercially available MR medical food. Participants remained on the experimental diet for an average of 17.3 weeks. Plasma methionine levels fell from 21.6 to 9 μm within 2 weeks, a 58% decline. The only side effect was weight loss of approximately 0.5 kg per week. A feasibility study combining dietary MR with a FOLFOX regimen in patients with metastatic colorectal cancer was carried out. The plasma MET concentration was reduced by dietary MR by 58% on the first day of the MR diet. Among the four patients evaluable for response, three experienced a partial response and one patient had disease stabilization. The results of the above-described clinical trials indicate the clinical potential of MR.

Key words

Methionine restriction Clinical trial Cancer Methionine (MET) dependence Total parenteral nutrition (TPN) MET-restricted TPN 5-Fluorouracil 5-FU Gastric cancer Resection Histological response 


  1. 1.
    Goseki N, Mori S, Habu H, Menjyo M, Murakami T (1980) Effect of intravenous methionine free hyperalimentation combined with anti-cancer drugs (RT-therapy) on adenocarcinoma of gastrointestinal tract. Jpn J Gastroenterol 77:112Google Scholar
  2. 2.
    Goseki N, Onodera T, Mori S, Menjyo M (1987) Clinical study of amino acid imbalance as an adjunct to cancer therapy. J Jpn Soc Cancer Ther 17:1908–1916Google Scholar
  3. 3.
    Goseki N, Onodera T, Kosaki G, Tsuruta K, Mori S, Tsukada K (1984) Methionine and cysteine free amino acid imbalance by total parenteral nutrition as an adjunct to cancer chemotherapy. In: Ogoshi S, Okada A (eds) Parenteral and enteral hyperalimentation. Elsevier, Amsterdam, pp 343–355Google Scholar
  4. 4.
    Goseki N, Onodera T, Tominaga T, Kosaki G, Koike M. (1985) Inhibitory effect of methionine deprived total parenteral nutrition combines with acinomycin-D on rat experimental tumors. Proc 14th Int Congr Chemother, 438–439Google Scholar
  5. 5.
    Goseki N, Onodera T, Koike M, Kosaki G (1987) Inhibitory effect of L-methionine deprived amino acid imbalance using total parenteral nutrition on growth of ascites hepatoma in rats. Tohoku J Exp Med 151:191–200CrossRefGoogle Scholar
  6. 6.
    Goseki N, Yamazaki S, Toyoda T, Endo M, Tsukada K, Onodera T, Kosaki G, Koike M, Satou H (1987) Cancer therapy by methionine deprived total parenteral nutrition with mitomycin C and/or 5-fluorouracil. Oncologia 20:99–110Google Scholar
  7. 7.
    Goseki N, Endo M, Onodera T, Kosaki G (1989) Influence of L-methionine-deprived total parenteral nutrition on the tumor and plasma amino acids fraction and host metabolism. Tohoku J Exp Med 157:251–260CrossRefGoogle Scholar
  8. 8.
    Goseki N, Endo M (1990) Thiol depletion and chemosensitization on nimustine hydrochloride by methionine-deprived total parenteral nutrition – experimental studies on Sato lung carcinoma bearing rats. Tohoku J Exp Med 161:227–239CrossRefGoogle Scholar
  9. 9.
    Goseki N, Endo M, Onodera T, Kosaki G (1991) Antitumor effect of methionine-deprived total parenteral nutrition with 5-fluorouracil administration on Yoshida sarcoma-bearing rats. Ann Surg 213:83–88Google Scholar
  10. 10.
    Goseki N, Yamazaki S, Endo M, Onodera T, Kosaki G, Hibino Y, Kuwahata T (1982) Antitumor effect of methionine-depleting total parenteral nutrition with doxorubicin administration on Yoshida sarcoma-bearing rats. Cancer 69:1865–1872CrossRefGoogle Scholar
  11. 11.
    Sugihara K, Goseki N, Yamazaki S, Endo M, Onodera T, Kosaki G, Mori S, Taguchi T, Kurihara M (1990) Early phase II study of the combined use of AO-90 methionine-free amino acid solution and anticancer agents (5-FU and MMC) in patients with advanced and recurrent gastrointestinal cancer. Jpn J Cancer Chemother 17:2405–2413Google Scholar
  12. 12.
    Taguchi T, Kosaki G, Onodera T, Endo M, Nakagawara Y, Kano K Kaibara N, Kakegawa T, Nakano S, Kurihara M, Akazawa S, Oota J, Kitamura M, Goseki N, Tokunaga K (1995) A controlled study of AO-90, a methionine-free amino acid solution, in advanced gastric cancer patients (surgery group evaluation). Jpn J Cancer Chemother in combination with 5-fluorouracil and mitomycin C. 22:753–764 (in Japanese with English abstract)Google Scholar
  13. 13.
    Goseki N, Yamazaki S, Shimojyu K, Kando F, Maruyama M, Endo M, Koike M, Takahashi H (1995) Synergistic effect of methionine-depleting total parenteral nutrition with 5-fluorouracil on human gastric cancer: a randomized, prospective clinical trial. Jpn J Cancer Res 86:484–489CrossRefGoogle Scholar
  14. 14.
    Yoshioka T, Wada T, Uchida N, Maki H, Yoshida H, Ide N, Kasai H, Hojo K, Shono K, Maekawa R, Yagi S, Hoffman RM, Sugita K (1998) Anticancer efficacy in vivo and in vitro, synergy with 5-fluorouracil, and safety of recombinant methioninase. Cancer Res 58:2583–2587Google Scholar
  15. 15.
    Tan Y, Sun X, Xu M, Tan X-Z, Sasson A, Rashidi B, Han Q, Tan X-Y, Wang X, An Z, Sun F-X, Hoffman RM (1999) Efficacy of recombinant methioninase in combination with cisplatin on human colon tumors in nude mice. Clin Cancer Res 5:2157–2163Google Scholar
  16. 16.
    Kokkinakis DM, Hoffman RM, Frenkel EP, Wick JB, Han Q, Xu M, Tan Y, Schold SC (2001) Synergy between methionine stress and chemotherapy in the treatment of brain tumor xenografts in athymic mice. Cancer Res 61:4017–4023Google Scholar
  17. 17.
    Murakami T, Li S, Han Q, Tan Y, Kiyuna T, Igarashi K, Kawaguchi K, Hwang HK, Miyaki K, Singh AS, Nelson SD, Dry SM, Li Y, Hiroshima Y, Lwin TM, DeLong JC, Chishima T, Tanaka K, Bouvet M, Endo I, Eilber FC, Hoffman RM (2017) Recombinant methioninase effectively targets a Ewing’s sarcoma in a patient-derived orthotopic xenograft (PDOX) nude-mouse model. Oncotarget 8:35630–35638PubMedPubMedCentralGoogle Scholar
  18. 18.
    Kawaguchi K, Igarashi K, Li S, Han Q, Tan Y, Kiyuna T, Miyake Y, Murakami T, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Unno M, Eilber FC, Hoffman RM (2017) Combination treatment with recombinant methioninase enables temozolomide to arrest a BRAF V600E melanoma growth in a patient-derived orthotopic xenograft. Oncotarget 8:85516–85525PubMedPubMedCentralGoogle Scholar
  19. 19.
    Kawaguchi K, Igarashi K, Li S, Han Q, Tan Y, Miyake K, Kiyuna T, Miyake M, Murakami T, Chmielowski S, Nelson SD, Russell TA, Dry SM, Li Y, Unno M, Eilber FC, Hoffman RM (2018) Recombinant methioninase (rMETase) is an effective therapeutic for BRAF-V600E-negative as well as -positive melanoma in patient-derived orthotopic xenograft (PDOX) mouse models. Oncotarget 9:915–923PubMedGoogle Scholar
  20. 20.
    Igarashi K, Kawaguchi K, Li S, Han Q, Tan Y, Murakami T, Kiyuna T, Miyake K, Miyake M, Singh AS, Eckhadt MA, Nelson SD, Russell TA, Dry SM, Li Y, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Singh RS, Eilber FC, Hoffman RM (2018) Recombinant methioninase in combination with DOX overcomes first-line DOX resistance in a patient-derived orthotopic xenograft nude-mouse model of undifferentiated spindle-cell sarcoma. Cancer Lett 417:168–173CrossRefGoogle Scholar
  21. 21.
    Igarashi K, Li S, Han Q, Tan Y, Kawaguchi K, Murakami T, Kiyuna T, Miyake K, Li Y, Nelson SD, Dry SM, Singh AS, Elliott I, Russell TA, Eckhadt MA, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Eilber FC, Hoffman RM (2018) Growth of a doxorubicin-resistant undifferentiated spindle-cell sarcoma PDOX is arrested by metabolic targeting with recombinant methioninase. J Cell Biochem 119:3537–3544CrossRefGoogle Scholar
  22. 22.
    Kawaguchi K, Han Q, Li S, Tan Y, Igarashi K, Miyake K, Kiyuna T, Miyake M, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Singh AS, Eckardt MA, Unno M, Eilber FC, Hoffman RM (2018) Intra-tumor L-methionine level highly correlates with tumor size in both pancreatic cancer and melanoma patient-derived orthotopic xenograft (PDOX) nude-mouse models. Oncotarget 9:11119–11125PubMedPubMedCentralGoogle Scholar
  23. 23.
    Kawaguchi K, Han Q, Li S, Tan Y, Igarashi K, Kiyuna T, Miyake K, Miyake M, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Eckhardt MA, Unno M, Eilber FC, Hoffman RM (2018) Targeting methionine with oral recombinant methioninase (o-rMETase) arrests a patient-derived orthotopic xenograft (PDOX) model of BRAF-V600E mutant melanoma: implications for clinical cancer therapy and prevention. Cell Cycle 17:356–361CrossRefGoogle Scholar
  24. 24.
    Hoffman RM (2015) Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: a 40-year odyssey. Expert Opin Biol Ther 15:21–31CrossRefGoogle Scholar
  25. 25.
    Yano S, Li S, Han Q, Tan Y, Bouvet M, Fujiwara T, Hoffman RM (2014) Selective methioninase-induced trap of cancer cells in S/G2 phase visualized by FUCCI imaging confers chemosensitivity. Oncotarget 5:8729–8736CrossRefGoogle Scholar
  26. 26.
    Yano S, Takehara K, Zhao M, Tan Y, Han Q, Li S, Bouvet M, Fujiwara T, Hoffman RM (2016) Tumor-specific cell-cycle decoy by Salmonella typhimurium A1-R combined with tumor-selective cell-cycle trap by methioninase overcome tumor intrinsic chemoresistance as visualized by FUCCI imaging. Cell Cycle 15:1715–1723CrossRefGoogle Scholar
  27. 27.
    Stern PH, Hoffman RM (1986) Enhanced in vitro selective toxicity of chemotherapeutic agents for human cancer cells based on a metabolic defect. J Natl Cancer Inst 76:629–639CrossRefGoogle Scholar
  28. 28.
    Thivat E, Farges MC, Bacin F, D'Incan M, Mouret-Reynier MA, Cellarier E, Madelmont JC, Vasson MP, Chollet P, Durando X (2009) Phase II trial of the association of a methionine-free diet with cystemustine therapy in melanoma and glioma. Anticancer Res 29:5235–5240PubMedPubMedCentralGoogle Scholar
  29. 29.
    Jacquillat C, Khayat D, Banzet P, Weil M, Fumoleau P, Avril MF, Namer M, Bonneterre J, Kerbrat P, Bonerandi JJ et al (1990) Final report of the French multicenter phase II study of the nitrosourea fotemustine in 153 evaluable patients with disseminated malignant melanoma including patients with cerebral metastases. Cancer 66:1873–1878CrossRefGoogle Scholar
  30. 30.
    Bajetta E, Del Vecchio M, Bernard-Marty C, Vitali M, Buzzoni R, Rixe O, Nova P, Aglione S, Taillibert S, Khayat D (2002) Metastatic melanoma: chemotherapy. Semin Oncol 29:427–445CrossRefGoogle Scholar
  31. 31.
    Galanis E, Buckner JC (2000) Chemotherapy of brain tumors. Curr Opin Neurol 13:619–625CrossRefGoogle Scholar
  32. 32.
    Thivat E, Durando X, D'Incan M, Cure H, Mouret-Reynier MA, Madelmont JC, Souteyrand P, Chollet P (2005) Second-line chemotherapy of disseminated malignant melanoma with cystemustine at 60 mg/m2: a phase II trial. Anticancer Drugs 16:1003–1007CrossRefGoogle Scholar
  33. 33.
    Poirson-Bichat F, Goncalves RA, Miccoli L, Dutrillaux B, Poupon MF (2000) Methionine depletion enhances the antitumoral efficacy of cytotoxic agents in drug-resistant human tumor xenografts. Clin Cancer Res 6:643–653PubMedGoogle Scholar
  34. 34.
    Morvan D, Papon J, Madelmont JC, Demidem A (2002) Methionine deprivation potentiates the effect of cystemustine treatment on B16 melanoma tumor in syngenic recipients. AACR Proc 2002:3822Google Scholar
  35. 35.
    Durando X, Thivat E, Farges MC, Cellarier E, D'Incan M, Demidem A, Vasson MP, Barthomeuf C, Chollet P (2008) Optimal methionine-free diet duration for nitrosourea treatment: a phase I clinical trial. Nutr Cancer 60:23–30CrossRefGoogle Scholar
  36. 36.
    Epner DE, Morrow S, Wilcox M, Houghton JL (2002) Nutrient intake and nutritional indexes in adults with metastatic cancer on a phase I clinical trial of dietary methionine restriction. Nutr Cancer 42:158–166CrossRefGoogle Scholar
  37. 37.
    Durando X, Farges MC, Buc E, Abrial C, Petorin-Lesens C, Gillet B, Vasson MP, Pezet D, Chollet P, Thivat E (2010) Dietary methionine restriction with FOLFOX regimen as first line therapy of metastatic colorectal cancer: a feasibility study. Oncology 78:205–209CrossRefGoogle Scholar
  38. 38.
    Kreis W (1979) Tumor therapy by depriving of 1-methionine: rationale and results. Cancer Treat Rep 63:1069–1072Google Scholar
  39. 39.
    Shimozato Y, Oboshi S, Baba E (1971) Histopathological evaluation of effects of radiotherapy and chemotherapy for carcinomas. Jpn J Clin Oncol 1:19–35Google Scholar
  40. 40.
    Wada Y, Kando F, Shimojyu K, Aoi C, Goseki N, Okabe S, Sunagawa M, Endo M (1993) Effects of pre-operative methionine-depleting total parenteral nutrition (RT-therapy) on gastric carcinoma — pathological study in two gastrectomized cases. J Jpn Soc Cancer Ther 28:429Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.AntiCancer, Inc.San DiegoUSA
  2. 2.Department of SurgeryUniversity of CaliforniaSan DiegoUSA

Personalised recommendations