Advertisement

Homocysteine, Thioretinaco Ozonide, and Oxidative Phosphorylation in Cancer and Aging: A Proposed Clinical Trial Protocol

  • Kilmer S. McCullyEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1866)

Abstract

The objective of the proposed clinical interventional trial is to demonstrate the efficacy of a novel therapeutic strategy in subjects with cancer and hyperhomocysteinemia. Following discovery of abnormal homocysteine thiolactone metabolism in cultured malignant cells, thioretinamide, the amide synthesized from retinoic acid and homocysteine thiolactone, and thioretinaco, the complex formed from cobalamin and thioretinamide, were demonstrated to have antineoplastic, anticarcinogenic, and anti-atherogenic properties in animal models. Retinol, ascorbate, and homocysteine thiolactone are necessary for biosynthesis of thioretinamide and thioretinaco by cystathionine synthase and for formation of thioretinaco ozonide from thioretinamide, cobalamin, and ozone. Thioretinaco ozonide is required for prevention of abnormal oxidative metabolism, aerobic glycolysis, suppressed immunity, and hyperhomocysteinemia in cancer.

The pancreatic enzyme therapy of cancer promotes catabolism of proteins, nucleic acids, and glycosaminoglycans with excess homocysteinylated amino groups resulting from abnormal accumulation of homocysteine thiolactone in malignant cells. Dietary deficiencies of pyridoxal, folate, cobalamin, and nitriloside contribute to hyperhomocysteinemia in cancer, and in protein energy malnutrition. A deficiency of dietary sulfur amino acids downregulates cystathionine synthase, causing hyperhomocysteinemia.

The organic sulfur compound diallyl trisulfide increases hydrogen sulfide production from homocysteine in animal models, inhibits Stat3 signaling in cancer stem cells, and produces apoptosis of malignant cells. The furanonaphthoquinone compound napabucasin inhibits Stat3 signaling and causes mitochondrial dysfunction, decreased oxidative phosphorylation, and apoptosis of malignant cells. The protocol of the proposed clinical trial in subjects with myelodysplasia consists of thioretinamide and cobalamin as precursors of thioretinaco ozonide, combined with pancreatic enzyme extracts, diallyl trisulfide, napabucasin, nutritional modification to minimize processed foods, vitamin supplements, essential amino acids, and beneficial dietary fats and proteins.

Key words

Adenosyl methionine Apoptosis Cystathionine synthase Diallyl trisulfide Homocysteine thiolactone Hyperhomocysteinemia Myelodysplasia Napabucasin Oxidative phosphorylation Pancreatic enzymes Thioretinamide Thioretinaco ozonide Clinical trial 

References

  1. 1.
    McCully KS (1993) Chemical pathology of homocysteine. I. Atherogenesis. Ann Clin Lab Sci 23:477–493PubMedPubMedCentralGoogle Scholar
  2. 2.
    McCully KS (1994) Chemical pathology of homocysteine. II. Carcinogenesis and homocysteine thiolactone metabolism. Ann Clin Lab Sci 24:27–59PubMedPubMedCentralGoogle Scholar
  3. 3.
    McCully KS (1994) Chemical pathology of homocysteine. III. Cellular function and aging. Ann Clin Lab Sci 24:134–152PubMedPubMedCentralGoogle Scholar
  4. 4.
    McCully KS (2009) Chemical pathology of homocysteine. IV. Excitotoxicity, oxidative stress, endothelial dysfunction, and inflammation. Ann Clin Lab Sci 39:219–232PubMedPubMedCentralGoogle Scholar
  5. 5.
    McCully KS (2011) Chemical pathology of homocysteine. V. Thioretinamide, thioretinaco, and cystathionine synthase function in degenerative diseases. Ann Clin Lab Sci 41:300–313Google Scholar
  6. 6.
    McCully KS (2016) Homocysteine metabolism, atherosclerosis, and diseases of aging. Compr Physiol 6:401–475Google Scholar
  7. 7.
    Blom H (2001) Diseases and drugs associated with hyperhomocysteinemia. In: Carmel R, Jacobsen DW (eds) Homocysteine in health and disease. Cambridge University Press, Cambridge, pp 331–340Google Scholar
  8. 8.
    McCully KS (1969) Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 56:111–128PubMedPubMedCentralGoogle Scholar
  9. 9.
    Kanwar YS, Manaligod JR, Wong WK (1976) Morphologic studies in a patient with homocystinuria due to 5,10-methylenetetrahydrofolate reductase deficiency. Pediatr Res 10:598–609PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    McCully KS (1976) Homocysteine thiolactone metabolism in malignant cells. Cancer Res 36:3198–3202PubMedPubMedCentralGoogle Scholar
  11. 11.
    Jakubowski H, Goldman E (1993) Synthesis of homocysteine thiolactone by methionyl-tRNA synthetase in cultured malignant cells. FEBS Lett 317:237–240PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    McCully KS (1981) Homocysteine thiolactone as a tumor promoter. US Patent 4,255,443, 10 Mar 1981Google Scholar
  13. 13.
    McCully KS, Clopath P (1977) Homocysteine compounds which influence the growth of a malignant neoplasm. Chemotherapy 23:44–49PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    McCully KS (1983) Homocysteine thiolactone salts and use thereof as antineoplastic agents. US Patent 4,383,994, 17 May 1983Google Scholar
  15. 15.
    McCully KS, Vezeridis MP (1987) Antineoplastic activity of a rhodium trichloride complex of oxalyl homocysteine thiolactone. Cancer Investig 5:25–30CrossRefGoogle Scholar
  16. 16.
    McCully KS, Vezeridis MP (1985) Antineoplastic activity of N-maleamide homocysteine thiolactone amide encapsulated within liposomes. Proc Soc Exp Biol Med 180:57–61PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    McCully KS, Vezeridis MP (1987) Chemopreventive and antineoplastic activity of N-homocysteine thiolactonyl retinamide. Carcinogenesis 8:1559–1562PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    McCully KS, Vezeridis MP (1989) Chemopreventive effect of N-homocysteine thiolactonyl retinamido cobalamin on carcinogenesis by ethyl carbamate in mice. Proc Soc Exp Biol Med 191:346–351PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kazimir M, Wilson FR (2002) Prevention of homocysteine thiolactone induced atherosclerosis in rats. Res Commun Molec Pharmacol 5(6):179–198Google Scholar
  20. 20.
    McCully KS (1996) Thioretinaco ozonide and enhanced biological activity of thioretinaco ozonide in combination with interferon. US Patent 5,565,558, 15 Oct 1996Google Scholar
  21. 21.
    McCully KS (2004) Enhanced liposomal thioretinaco ozonide compositions and liposomal carrier. US Patent 6,696,082, 24 Feb 2004Google Scholar
  22. 22.
    McCully KS (1971) Homocysteine metabolism in scurvy, growth and arteriosclerosis. Nature 231:391–392PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Clopath P, Smith VC, McCully KS (1976) Growth promotion by homocysteic acid. Science 192:372–374PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    McCully KS (1975) Growth disorders and homocysteine metabolism. Ann Clin Lab Sci 5:147–152PubMedPubMedCentralGoogle Scholar
  25. 25.
    McCully KS (1972) Macromolecular basis for homocysteine-induced changes in proteoglycan structure in growth and arteriosclerosis. Am J Pathol 66:83–95PubMedPubMedCentralGoogle Scholar
  26. 26.
    Hanck A (1986) Ascorbic acid and cancer. In: Myeskens FL Jr, Prasad KN Eds, Vitamins and cancer, Humana Press, Clifton, NJ, pp 365–397CrossRefGoogle Scholar
  27. 27.
    Warburg O (1931) The oxygen-transferring ferment of respiration. Nobel Lecture, 10 Dec 1931Google Scholar
  28. 28.
    Warburg O (1956) On the origin of cancer cells. Science 123:309–314CrossRefGoogle Scholar
  29. 29.
    Schon R, Menke KH, Negelein E (1961) The influence of heavy metal ions on the Ehrlich ascites tumor cells of mice and the effect of cysteine. Z Physiol Chem 323:155–163CrossRefGoogle Scholar
  30. 30.
    Cameron E, Campbell A (1974) The orthomolecular treatment of cancer. II. Clinical trial of high-dose ascorbic acid supplements in advanced human cancer. Chem Biol Interact 9:285–315PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Cameron E, Pauling L (1978) Supplemental ascorbate in the supportive treatment of cancer: reevaluation of survival times in terminal human cancer. Proc Natl Acad Sci U S A 75:4538–4542PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ingenbleek Y, Hardillier E, Jung L (2002) Subclinical malnutrition is a determinant of hyperhomocysteinemia. Nutrition 18:40–46PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Ingenbleek Y, McCully KS (2012) Vegetarianism produces subclinical malnutrition, hyperhomocysteinemia and atherogenesis. Nutrition 28:148–152PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ingenbleek Y, De Visscher M, De Nayer P et al (1972) Measurement of prealbumin as index of protein-calorie malnutrition. Lancet 2(7768):106–109PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ingenbleek Y (2009) Hyperhomocysteinemia is a biomarker for sulfur-deficiency in human morbidities. Open Clin Chem J 2:49–60CrossRefGoogle Scholar
  36. 36.
    Carballal S, Madzelan P, Zinola CF et al (2008) Dioxygen reactivity and heme redox potential of truncated human cystathionine β-synthase. Biochemistry 47:3194–3202PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Smith TJ, Drummond GS (1991) Retinoic acid can enhance the stimulation by thyroid hormone of heme oxygenase activity in the liver of thyroidectomized rats. Biochim Biophys Acta 1075:119–122PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Samuel W, Kutty RK, Nagineni S et al (2006) N-(4-hydroxyphenyl) retinamide induces apoptosis in human retinal pigment epithelial cells: retinoic acid receptors regulate apoptosis, reactive oxygen species generation, and the expression of heme oxygenase-1 and Gadd153. J Cell Physiol 209:854–865PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Hail N Jr, Kim HJ, Lotan R (2006) Mechanisms of fenretinide-induced apoptosis. Apoptosis 11:1677–1694PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Miles EW, Kraus JP (2004) Cystathionine β-synthase: structure, function, regulation, and location of homocystinuria-causing mutations. J Biol Chem 279:29871–29874PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Kim J, Hong SJ, Park JH et al (2009) Expression of cystathionine β-synthase is downregulated in hepatocellular carcinoma and associated with poor prognosis. Oncol Rep 21:1449–1454PubMedPubMedCentralGoogle Scholar
  42. 42.
    Hong WK, Sporn MB (1997) Recent advances in chemoprevention of cancer. Science 278:1073–1077PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Huang ME, Ye YI, Chen SR (1988) Use of all-trans-retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72:567–572PubMedPubMedCentralGoogle Scholar
  44. 44.
    Chomienne C, Ballerini P, Balitrand N et al (1989) Retinoic acid therapy for promyelocytic leukaemia. Lancet 334(8665):746–747CrossRefGoogle Scholar
  45. 45.
    Simeone AM, Tari AM (2004) How retinoids regulate breast cancer cell proliferation and apoptosis. Cell Mol Life Sci 61:1475–1484PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Moise AR, Noy N, Palczewski K, Blaner WS (2007) Delivery of retinoid-based therapies to target tissues. Biochemistry 46:4449–4458PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    McCully KS (2015) The active site of oxidative phosphorylation and the origin of hyperhomocysteinemia in aging and dementia. Ann Clin Lab Sci 45:222–225PubMedPubMedCentralGoogle Scholar
  48. 48.
    Beard J (1911) The enzymatic treatment of cancer and its scientific basis. Chatto & Windus, London, 1911, republished by New Spring Press, New York, 2010 with a foreword by Nicholas GonzalezGoogle Scholar
  49. 49.
    Acevedo HF, Tong JY, Hartsock RJ (1995) Human chorionic gonadotropin-beta subunit gene expression in cultured human fetal and cancer cells of different types and origins. Cancer 76:1467–1475PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Novak JF, Trynka F (2005) Proenzyme therapy of cancer. Anticancer Res 25:1157–1178PubMedPubMedCentralGoogle Scholar
  51. 51.
    Gonzalez N, Isaacs L (2009) The trophoblast and the origins of cancer. New Spring Press, New YorkGoogle Scholar
  52. 52.
    Perla-Kajan J, Twardowski T, Jakubowski H (2007) Mechanisms of homocysteine toxicity in humans. Amino Acids 32:561–572PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Gaull G, Sturman JA, Raiha NCR (1972) Development of mammalian sulfur metabolism: absence of cystathionase in fetal tissues. Pediatr Res 6:538–547PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    McCully KS (2016) Homocysteine, thioretinaco ozonide, oxidative phosphorylation, biosynthesis of phosphoadenosine phosphosulfate and the pathogenesis of atherosclerosis. Ann Clin Lab Sci 46:701–704PubMedPubMedCentralGoogle Scholar
  55. 55.
    Schneider WC, Potter VR (1943) Biocatalysts in cancer tissue. III. Succinic dehydrogenase and cytochrome oxidase. Cancer Res 3:353–357Google Scholar
  56. 56.
    Krebs ET Jr (1962) The nitrilosides in the prevention and control of cancer. McNaughton Foundation, Los Angeles, pp 1–21Google Scholar
  57. 57.
    Sen U, Basu P, Abe OA et al (2009) Hydrogen sulfide ameliorates hyperhomocysteinemia-associated chronic renal failure. Am J Physiol Renal Physiol 297:F410–F419PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Olson KR, Whitfield NL (2010) Hydrogen sulfide and oxygen sensing in the cardiovascular system. Antioxid Redox Signal 12:1219–1234PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Chang L, Geng B, Yu F et al (2008) Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids 34:573–585PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Polhemus DJ, Lefer DJ (2014) Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res 114:730–737PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Elrod JW, Calvert JW, Morrison J et al (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A 104:15560–15565PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Benavides GA, Squadrito GL, Mills RW et al (2007) Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci U S A 104:17977–17982PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Yeh YY, Yeh SM (2006) Homocysteine-lowering action is another potential cardiovascular protective factor of aged garlic extract. J Nutr 136:745S–749SPubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Chen LY, Chen Q, Zhu XJ et al (2016) Diallyl trisulfide protects against ethanol-induced oxidative stress and apoptosis via a hydrogen sulfide-mediated mechanism. Int Immunopharmacol 36:23–30PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Tsai CY, Wang CC, Lai TY et al (2013) Antioxidant effects of diallyl trisulfide on high glucose-induced apoptosis are mediated by the PI3K/Akt-dependent activation of Nrf2 in cardiomyocytes. Int J Cardiol 168:1286–1297PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Tsai CY, Wen SY, Shibu MA et al (2015) Diallyl trisulfide protects against high glucose-induced cardiac apoptosis by stimulating the production of cystathionine gamma-lyase-derived hydrogen sulfide. Int J Cardiol 195:300–310PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Das A, Banik NL, Ray SK (2007) Garlic compounds generate reactive oxygen species leading to activation of stress kinases and cysteine proteases for apoptosis in human glioblastoma T98G and U87MG cells. Cancer 110:1083–1094PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Na HK, Kim EH, Choi MA et al (2012) Diallyl trisulfide induces apoptosis in human breast cancer cells through ROS-mediated activation of JNK and AP-1. Biochem Pharmacol 84:1241–1250PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Chandra-Kuntal K, Lee J, Singh SV (2013) Critical role for reactive oxygen species in apoptosis induction and cell migration inhibition by diallyl trisulfide, a cancer chemopreventive component of garlic. Breast Cancer Res Treat 138:69–79PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Liu Y, Zhu P, Wang Y et al (2015) Antimetastatic therapies of the polysulfide diallyl trisulfide against triple-negative breast cancer (TNBC) via suppression MMP2/9 by blocking NF-κB and ERK/MAPK signaling pathways. PLoS One 10:e1023781Google Scholar
  71. 71.
    Kim SH, Kaschula CH, Priedigkeit N et al (2016) Forkhead box Q1 is a novel target of breast cancer stem cell inhibition by diallyl trisulfide. J Biol Chem 291:13495–13508PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Wang HC, Pao J, Lin SY et al (2012) Molecular mechanisms of garlic-derived allyl sulfides in the inhibition of skin cancer progression. Ann N Y Acad Sci 1271:44–52PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Ma HB, Huang S, Yin XR et al (2014) Apoptotic pathway induced by diallyl trisulfide in pancreatic cancer cells. World J Gastroenterol 20:193–203PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Seki T, Tsuji K, Hayato Y et al (2000) Garlic and onion oils inhibit proliferation and induce differentiation of HL-60 cells [human promyelocytic leukemia cells]. Cancer Lett 160:29–35PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Desmond JC, Kawabata H, Mueller-Tidow C et al (2005) The synthetic furanonapthoquinone induces growth arrest, apoptosis and differentiation in a variety of leukaemias and multiple myeloma cells. Brit J Haematol 131:520–529CrossRefGoogle Scholar
  76. 76.
    Gafner S, Wolfender JL, Nianga M et al (1996) Antifungal and antibacterial napthoquinones from Newbouldia laevis roots. Phytochemistry 42:1315–1320PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Gormann R, Kaloga M, Li XC et al (2003) Furanonaphthoquinones, atraric acid and a benzofuran from stem barks of Newbouldia laevis. Phytochemistry 64:583–587PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Peraza-Sanchez SR, Chavez D, Chai HB et al (2000) Cytotoxic constituents of the roots of Ekmanianthe longiflora. J Nat Prod 63:492–495PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Itoigawa M, Ito C, Tan HTW et al (2001) Cancer chemopreventive activity of naphthoquinones and their analogs from Avicennia plants. Cancer Lett 174:135–139PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Ogawa M, Koyanagi J, Sugaya A et al (2006) Cytotoxic activity toward KB cells of 2-substituted naphtho[2,3-b]furan-4,9-diones and their related compounds. Biosci Biotechnol Biochem 70:1009–1012PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Williams RB, Norris A, Miller JS et al (2006) Two new cytotoxic naphthoquinones from Mendoncia cowanii from the rainforest of Madagascar. Planta Med 72:564–566PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Song H, Wang R, Wang S, Lin J (2005) A low-molecular weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. Proc Natl Acad Sci U S A 102:4700–4705PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Jiang Z, Chiang JL, Leggett D (2014) STAT3 pathway inhibitors and cancer stem cell inhibitors. US Patent 8,877,803, 4 Nov 2014Google Scholar
  84. 84.
    Li Y, Rogoff HA, Keates S et al (2015) Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc Natl Acad Sci U S A 112:1839–1844PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Zhang Y, Jin Z, Zhou H et al (2016) Suppression of prostate cancer progression by cancer cell stemness inhibitor napabucasin. Cancer Med 5:1251–1258PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Chandra-Kuntal K, Singh SV (2010) Diallyl trisulfide inhibits activation of Signal Transducer and Activator of Transcription 3 in prostate cancer cells in culture and in vivo. Cancer Prev Res (Phila) 3:1473–1483CrossRefGoogle Scholar
  87. 87.
    Lee HJ, Lee HG, Choi KS et al (2013) Diallyl trisulfide suppresses dextran sodium sulfate-induced mouse colitis: NFκB and STAT3 as potential targets. Biochem Biophys Res Commun 437:267–273PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Cortelezzi A, Fracchiolla NS, Bamonti-Catena F et al (2001) Hyperhomocysteinemia in myelodysplastic syndromes: specific association with autoimmunity and cardiovascular disease. Leuk Lymphoma 41:147–150PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Giannouli S, Kanellopoulou T, Voulegarelis M (2012) Myelodysplasia and autoimmunity. Curr Opin Rheumatol 24:97–102PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Fracchiolla NS, Catena FB, Novembrino C et al (2003) Possible association between reactive oxygen metabolites and karyotypic abnormalities in myelodysplastic syndromes. Haematologica 88:594–597PubMedPubMedCentralGoogle Scholar
  91. 91.
    Pimkova K, Chrastinova L, Suttnar J et al (2014) Plasma levels of aminothiols, nitrite, nitrate, and malondialdehyde in myelodysplastic syndromes in the context of clinical outcomes and as a consequence of iron overload. Oxidative Med Cell Longev 2014:416028CrossRefGoogle Scholar
  92. 92.
    Cortelezzi A, Cattaneo C, Sarina B et al (1999) Efficacy of N-acetylcysteine and all-trans-retinoic acid in restoring in vitro effective hemopoiesis in myelodysplastic syndromes. Leuk Res 24:129–137CrossRefGoogle Scholar
  93. 93.
    Nimer SD (2008) Myelodysplastic syndromes. Blood 111:4841–4851PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Gurion R, Vidal L, Gafter-Gvilli A et al (2010) 5-azacytidine prolongs overall survival in patients with myelodysplastic syndrome—a systematic review and meta-analysis. Haematologica 95:303–310PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    “Prescribing information—Azacytidine for Infection” (2016) fda.gov United States Food and Drug Administration
  96. 96.
    Jerez A, Clemente MJ, Makishima H et al (2013) STAT3 mutations indicate the presence of subclinical T-cell clones in a subset of aplastic anemia and myelodysplasia syndrome patients. Blood 122:2453–2459PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Schultz KR (2013) STAT3 mutations and persistence of autoimmunity. Blood 122:2295–2296PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Mitiades P, Lamprianidou E, Vassilakopoulos TP et al (2016) The Stat 3/5 signaling biosignature in hematopoietic stem/progenitor cells predicts response and outcome in myelodysplastic syndrome patients treated with azacytidine. Clin Cancer Res 22:1958–1968CrossRefGoogle Scholar
  99. 99.
    Milner JD, Vogel TP, Forbes L et al (2015) Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood 125:591–599PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Haapaniemi EM, Kaustio M, Rajala HLM et al (2015) Autoimmunity, hypogammaglobulinemia, lymphoproliferation, and mycobacterial disease in patients with activating mutations in STAT3. Blood 125:639–648PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Harris TJ, Grosso JF, Yen HR et al (2007) An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J Immunol 179:4313–4317PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Zhang S, Zheng M, Kibe R et al (2011) Trp53 negatively regulates autoimmunity via the STAT3-Th17 axis. FASEB J 25:2387–2398PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Daw S, Chatterjee R, Law A et al (2016) Analysis of hematopathology and alteration of JAK1/STAT3/STAT5 signaling axis in experimental myelodysplastic syndrome. Chem Biol Interact 260:176–185PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Lee SY, Moon SJ, Kim EK et al (2017) Metformin suppresses systemic autoimmunity in Roquinsan/san mice through inhibiting B cell differentiation into plasma cells via regulation of AMPK/mTOR/STAT3. J Immunol 198:2661–2670PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    McCully KS (2015) Compositions and method for utilization of thioretinamide in therapy of diseases of aging. US Patent No. 9,216,209. 22 Dec 2015Google Scholar
  106. 106.
    McCully KS (2017) Thioretinamide compositions for the apoptosis of malignant cells while preventing the apoptosis of normal cells and related methods. US Continuing Patent Application S.N. 15/475,103, 30 Mar 2017Google Scholar
  107. 107.
    Kazimir M, Wilson R (2000) Method for synthesis of N-homocysteine thiolactonyl retinamide. US Patent 6,054,595, 25 Apr 2000Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PathologyHarvard Medical SchoolBostonUSA
  2. 2.Pathology and Laboratory Medicine ServiceVA Boston Healthcare SystemBostonUSA

Personalised recommendations