Advertisement

Is the Hoffman Effect for Methionine Overuse Analogous to the Warburg Effect for Glucose Overuse in Cancer?

  • Robert M. HoffmanEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1866)

Abstract

The general cancer-specific metabolic defect of methionine (MET) dependence is due to MET overuse for aberrant transmethylation reactions. The excess use of MET for aberrant transmethylation reactions apparently diverts methyl groups from DNA. The resulting global DNA hypomethylation is also a general phenomenon in cancer and leads to unstable genomes and aneuploid karyotypes. The excessive and aberrant use of MET in cancer is readily observed in [11C]-MET-PET imaging, where high uptake of [11C]-MET results in a very strong and selective tumor signal compared to normal tissue background for brain cancer and possibly other cancers. [11C]-MET is superior to [18C]-fluorodeoxyglucose (FDG) for PET imaging, suggesting that MET overuse in cancer (“Hoffman effect”) is greater than glucose overuse in cancer (“Warburg effect”).

Key words

Methionine dependence Cellular methionine S-Adenosylmethionine Transmethylation DNA methylation Hoffman effect 

References

  1. 1.
    Sugimura T, Birnbaum SM, Winitz M, Greenstein JP (1959) Quantitative nutritional studies with water-soluble, chemically defined diets. VIII. The forced feeding of diets each lacking in one essential amino acid. Arch Biochem Biophys 81:448–455CrossRefGoogle Scholar
  2. 2.
    Chello PL, Bertino JR (1973) Dependence of 5-methyltetrahydrofolate utilization by L5178Y murine leukemia cells in vitro on the presence of hydroxycobalamin and transcobalamin II. Cancer Res 33:1898–1904PubMedGoogle Scholar
  3. 3.
    Mecham JO, Rowitch D, Wallace CD, Stern PH, Hoffman RM (1983) The metabolic defect of methionine dependence occurs frequently in human tumor cell lines. Biochem Biophys Res Commun 117:429–434CrossRefGoogle Scholar
  4. 4.
    Tan Y, Xu M, Hoffman RM (2010) Broad selective efficacy of recombinant methioninase and polyethylene glycol-modified recombinant methioninase on cancer cells in vitro. Anticancer Res 30:1041–1046PubMedGoogle Scholar
  5. 5.
    Hoffman RM (2015) Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: a 40-year odyssey. Expert Opin Biol Ther 15:21–31CrossRefGoogle Scholar
  6. 6.
    Hoffman RM (2017) The wayward methyl group and the cascade to cancer. Cell Cycle 16:825–829CrossRefGoogle Scholar
  7. 7.
    Hoffman RM, Erbe RW (1976) High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc Natl Acad Sci U S A 73:1523–1527CrossRefGoogle Scholar
  8. 8.
    Coalson DW, Mecham JO, Stern PH, Hoffman RM (1982) Reduced availability of endogenously synthesized methionine for S-adenosylmethionine formation in methionine dependent cancer cells. Proc Natl Acad Sci U S A 79:4248–4251CrossRefGoogle Scholar
  9. 9.
    Stern PH, Hoffman RM (1984) Elevated overall rates of transmethylation in cell lines from diverse human tumors in vitro 20:663–670PubMedGoogle Scholar
  10. 10.
    Murakami T, Li S, Han Q, Tan Y, Kiyuna T, Igarashi K, Kawaguchi K, Hwang HK, Miyaki K, Singh AS, Hiroshima Y, Lwin TM, DeLong JC et al (2017) Recombinant methioninase effectively targets a Ewing’s sarcoma in a patient-derived orthotopic xenograft (PDOX) nude-mouse model. Oncotarget 8:35630–35638PubMedPubMedCentralGoogle Scholar
  11. 11.
    Kawaguchi K, Igarashi K, Li S, Han Q, Tan Y, Kiyuna T, Miyake Y, Murakami T, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y et al (2017) Combination treatment with recombinant methioninase enables temozolomide to arrest a BRAF V600E melanoma growth in a patient-derived orthotopic xenograft. Oncotarget 8:85516–85525PubMedPubMedCentralGoogle Scholar
  12. 12.
    Hoffman RM, Jacobsen SJ (1980) Reversible growth arrest in simian virus 40-transformed human fibroblasts. Proc Natl Acad Sci U S A 77:7306–7310CrossRefGoogle Scholar
  13. 13.
    Yano S, Li S, Han Q, Tan Y, Bouvet M, Fujiwara T, Hoffman RM (2014) Selective methioninase-induced trap of cancer cells in S/G2 phase visualized by FUCCI imaging confers chemosensitivity. Oncotarget 5:8729–8736CrossRefGoogle Scholar
  14. 14.
    Hoffman RM, Jacobsen SJ, Erbe RW (1978) Reversion to methionine independence by malignant rat and SV40-transformed human fibroblasts. Biochem Biophys Res Commun 82:228–234CrossRefGoogle Scholar
  15. 15.
    Judde JG, Ellis M, Frost P (1989) Biochemical analysis of the role of transmethylation in the methionine dependence of tumor cells. Cancer Res 49:4859–4865PubMedGoogle Scholar
  16. 16.
    Hoffman RM, Jacobsen SJ, Erbe RW (1979) Reversion to methionine independence in simian virus 40-transformed human and malignant rat fibroblasts is associated with altered ploidy and altered properties of transformation. Proc Natl Acad Sci U S A 76:1313–1317CrossRefGoogle Scholar
  17. 17.
    Diala ES, Hoffman RM (1982) Hypomethylation of HeLa cell DNA and the absence of 5-methylcytosine in SV40 and adenovirus (type 2) DNA: analysis by HPLC. Biochem Biophys Res Commun 107:19–26CrossRefGoogle Scholar
  18. 18.
    Diala ES, Cheah MSC, Rowitch D, Hoffman RM (1983) Extent of DNA methylation in human tumor cells. J Natl Cancer Inst 71:755–764PubMedGoogle Scholar
  19. 19.
    Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4:143–153CrossRefGoogle Scholar
  20. 20.
    Park JH, Park J, Choi JK et al (2011) Identification of DNA methylation changes associated with human gastric cancer. BMC Med Genet 4:82Google Scholar
  21. 21.
    Yoshida T, Yamashita S, Takamura-Enya T et al (2011) Alu and Satalpha hypomethylation in Helicobacter pylori-infected gastric mucosae. Int J Cancer 128:33–39CrossRefGoogle Scholar
  22. 22.
    Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92CrossRefGoogle Scholar
  23. 23.
    Feinberg AP, Vogelstein B (1983) Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun 111:47–54CrossRefGoogle Scholar
  24. 24.
    Khan R, Zhang XY, Supakar PC, Ehrlich KC, Ehrlich M (1988) Human methylated DNA-binding protein. Determinants of a pBR322 recognition site. J Biol Chem 263:14374–14383PubMedGoogle Scholar
  25. 25.
    Leodolter A, Alonso S, González B, Ebert MP, Vieth M, Röcken C, Wex T, Peitz U, Malfertheiner P, Perucho M (2015) Somatic DNA hypomethylation in H. pylori-associated high-risk gastritis and gastric cancer: enhanced somatic hypomethylation associates with advanced stage cancer. Clin Transl Gastroenterol 6:e85CrossRefGoogle Scholar
  26. 26.
    Ushijima T, Hattori N (2012) Molecular pathways: involvement of Helicobacter pylori-triggered inflammation in the formation of an epigenetic field defect, and its usefulness as cancer risk and exposure markers. Clin Cancer Res 18:923–929CrossRefGoogle Scholar
  27. 27.
    Liteplo RG, Kerbel RS (1987) Reduced levels of DNA 5-methylcytosine in metastatic variants of the human melanoma cell line MeWo. Cancer Res 47:2264–2267PubMedGoogle Scholar
  28. 28.
    Tisdale MJ (1980) Effect of methionine deprivation on methylation and synthesis of macromolecules. Br J Cancer 42:121–128CrossRefGoogle Scholar
  29. 29.
    Bloomfield M, McCormack A, Mandrioli D, Fiala C, Aldaz CM, Duesberg P (2014) Karyotypic evolutions of cancer species in rats during the long latent periods after injection of nitrosourea. Mol Cytogenet 7:71CrossRefGoogle Scholar
  30. 30.
    Borrego SL, Fahrmann J, Datta R, Stringari C, Grapov D, Zeller M, Chen Y, Wang P, Baldi P, Gratton E, Fiehn O, Kaiser P (2016) Metabolic changes associated with methionine stress sensitivity in MDA-MB-468 breast cancer cells. Cancer Metab 4:9CrossRefGoogle Scholar
  31. 31.
    Grosu AL, Weber WA, Riedel E, Jeremic B, Nieder C, Franz M, Gumprecht H, Jaeger R, Schwaiger M, Molls M (2005) L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys 63:64–74CrossRefGoogle Scholar
  32. 32.
    Glaudemans AW, Enting RH, Heesters MA, Dierckx RA, van Rheenen RW, Walenkamp AM, Slart RH (2013) Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging 40:615–635CrossRefGoogle Scholar
  33. 33.
    Tsuyuguchi N, Takami T, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Nishikawa M, Ohata K, Torii K, Morino M, Nishio A, Hara M (2004) Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery--in malignant glioma. Ann Nucl Med 18:291–296CrossRefGoogle Scholar
  34. 34.
    Nariai T, Tanaka Y, Wakimoto H, Aoyagi M, Tamaki M, Ishiwata K, Senda M, Ishii K, Hirakawa K, Ohno K (2005) Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507CrossRefGoogle Scholar
  35. 35.
    Tamura K, Yoshikawa K, Ishikawa H, Hasebe M, Tsuji H, Yanagi T, Suzuki K, Kubo A, Tsujii H (2009) Carbon-11-methionine PET imaging of choroidal melanoma and the time course after carbon ion beam radiotherapy. Anticancer Res 29:1507–1514PubMedGoogle Scholar
  36. 36.
    Singhal T, Narayanan TK, Jacobs MP, Bal C, Mantil JC (2012) 11C-methionine PET for grading and prognostication in gliomas: a comparison study with 18F-FDG PET and contrast enhancement on MRI. J Nucl Med 53:1709–1715CrossRefGoogle Scholar
  37. 37.
    Warburg O (1956) On the origin of cancer cells. Science 123:309–314CrossRefGoogle Scholar
  38. 38.
    Weinhouse S, Warburg O, Burk D, Schade AL (1956) On respiratory impairment in cancer cells. Science 124:267–272CrossRefGoogle Scholar
  39. 39.
    Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell metabolism 23:27–47CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.AntiCancer, Inc.San DiegoUSA
  2. 2.Department of SurgeryUniversity of CaliforniaSan DiegoUSA

Personalised recommendations