Methionine Gamma Lyase from Clostridium sporogenes Increases the Anticancer Efficacy of Doxorubicin on A549 Cancer Cells In Vitro and Human Cancer Xenografts

  • V. S. Pokrovsky
  • N. Yu. Anisimova
  • D. Zh. Davydov
  • S. V. Bazhenov
  • N. V. Bulushova
  • G. B. Zavilgelsky
  • V. Y. Kotova
  • I. V. Manukhov
Part of the Methods in Molecular Biology book series (MIMB, volume 1866)


The anticancer efficacy of methionine γ-lyase (MGL) from Clostridium sporogenes (C. sporogenes) is described. MGL was active against cancer cells in vitro and in vivo. Doxorubicin (DOX) and MGL were more effective on A549 human lung-cancer growth inhibition than either agent alone in vitro and in vivo.

Key words

Methioninase Clostridium sporogenes Anticancer efficacy Doxorubicin Lung cancer Human tumor xenografts 


  1. 1.
    El-Sayed AS (2010) Microbial L-methioninase: production, molecular characterization, and therapeutic applications. Appl Microbiol Biotechnol 86:445–467CrossRefGoogle Scholar
  2. 2.
    Cellarier E, Durando X, Vasson MP et al (2003) Methionine dependency and cancer treatment. Cancer Treat Rev 29:488–489CrossRefGoogle Scholar
  3. 3.
    Hoffman RM (2015) Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: a 40-year odyssey. Expert Opin Biol Ther 15:21–31CrossRefGoogle Scholar
  4. 4.
    Kreis W, Hession C (1973) Biological effects of enzymatic deprivation of L-methionine in cell culture and an experimental tumor. Cancer Res 33:1866–1869PubMedGoogle Scholar
  5. 5.
    Yoshioka T, Wada T, Uchida N et al (1998) Anticancer efficacy in vivo and in vitro, synergy with 5-fluorouracil and safety of recombinant methioninase. Cancer Res 58:2583–2587PubMedGoogle Scholar
  6. 6.
    Tan Y, Sun X, Xu M et al (1999) Efficacy of recombinant methioninase in combination with cisplatin on human colon tumors in nude mice. Clin Cancer Res 5:2157–2163PubMedGoogle Scholar
  7. 7.
    Kokkinakis DM, Wick JB, Zhou Q-X (2002) Metabolic response of normal and malignant tissue to acute and chronic methionine stress in athymic mice bearing human glial tumor xenografts. Chem Res Toxicol 15:1472–1479CrossRefGoogle Scholar
  8. 8.
    Murakami T, Li S, Han Q et al (2017) Recombinant methioninase effectively targets a Ewing’s sarcoma in a patient-derived orthotopic xenograft (PDOX) nude-mouse model. Oncotarget 8:35630–35638PubMedPubMedCentralGoogle Scholar
  9. 9.
    Kawaguchi K, Igarashi K, Li S et al (2017) Combination treatment with recombinant methioninase enables temozolomide to arrest a BRAF V600E melanoma growth in a patient-derived orthotopic xenograft. Oncotarget 8:85516–85525PubMedPubMedCentralGoogle Scholar
  10. 10.
    Igarashi K, Kawaguchi K, Li S et al (2018) Recombinant methioninase in combination with DOX overcomes first-line DOX resistance in a patient-derived orthotopic xenograft nude-mouse model of undifferentiated spindle-cell sarcoma. Cancer Lett 417:168–173CrossRefGoogle Scholar
  11. 11.
    El-Sayed AS, Shouman SA, Nassrat HM (2012) Pharmacokinetics, immunogenicity and anticancer efficiency of Aspergillus flavipes L-methioninase. Enzym Microb Technol 51(4):200–210CrossRefGoogle Scholar
  12. 12.
    Stern PH, Hoffman RM (1986) Enhanced in vitro selective toxicity of chemotherapeutic agents for human cancer cells based on a metabolic defect. J Natl Cancer Inst (Bethesda) 76:629–639CrossRefGoogle Scholar
  13. 13.
    Kokkinakis DM, Schold SCJ, Hori H, Nobori T (1997) Effect of long-term depletion of plasma methionine on the growth and survival of human brain tumor xenografts in athymic mice. Nutr Cancer 29:195–204CrossRefGoogle Scholar
  14. 14.
    Kokkinakis DM, Hoffman RM, Frenkel EP et al (2001) Synergy between methionine stress and chemotherapy in the treatment of brain tumor xenografts in athymic mice. Cancer Res 61:4017–4023PubMedGoogle Scholar
  15. 15.
    Morozova EA, Kulikova VV, Yashin DV et al (2013) Kinetic parameters and cytotoxic activity of recombinant methionine γ-Lyase from Clostridium tetani, Clostridium sporogenes, Porphyromonas gingivalis and Citrobacter freundii. Acta Nat 5(3):92–98Google Scholar
  16. 16.
    Anufrieva NV, Morozova EA, Kulikova VV et al (2015) Sulfoxides, analogues of L-methionine and L-cysteine as pro-drugs against gram-positive and gram-negative bacteria. Acta Nat 7(4):128–135Google Scholar
  17. 17.
    Pokrovskaya MV, Pokrovsky VS, Aleksandrova SS et al (2012) Recombinant intracellular Rhodospirillum rubrum L-asparaginase with low L-glutaminase activity and antiproliferative effect. Biochem (Moscow) Suppl B Biomed Chem 6(2):123–131Google Scholar
  18. 18.
    Wang WT, Zhao Y, Gao JL et al (2014) Cytotoxicity enhancement in MDA-MB-231 cells by the combination treatment of tetrahydropalmatine and berberine derived from Corydalis yanhusuo W. T. Wang. J Intercult Ethnopharmacol 3(2):68–72CrossRefGoogle Scholar
  19. 19.
    Sidoruk KV, Pokrovsky VS, Borisova AA et al (2011) Creation of a producent, optimization of expression, and purification of recombinant Yersinia pseudotuberculosis L-asparaginase. Bull Exp Biol Med 152(2):219–223CrossRefGoogle Scholar
  20. 20.
    Pokrovskaya MV, Aleksandrova SS, Pokrovsky VS et al (2015) Identification of functional regions in the Rhodospirillum rubrum L-asparaginase by site-directed mutagenesis. Mol Biotechnol 57(3):251–264CrossRefGoogle Scholar
  21. 21.
    Pokrovsky VS, Kazanov MD, Dyakov IN et al (2016) Comparative immunogenicity and structural analysis of epitopes of different bacterial L-asparaginases. BMC Cancer 16:89CrossRefGoogle Scholar
  22. 22.
    Sannikova EP, Bulushova NV, Cheperegin SE et al (2016) The modified heparin-binding L-Asparaginase of Wolinella succinogenes. Mol Biotechnol 58(8–9):528–539CrossRefGoogle Scholar
  23. 23.
    Pokrovsky VS, Treshalina HM, Lukasheva EV et al (2013) Enzymatic properties and anticancer activity of L-lysine α-oxidase from Trichoderma cf. aureoviride Rifai BKMF-4268D. Anti-Cancer Drugs 24(8):846–851CrossRefGoogle Scholar
  24. 24.
    Babich OO, Pokrovsky VS, Anisimova NY et al (2013) Recombinant l-phenylalanine ammonia lyase from Rhodosporidium toruloides as a potential anticancer agent. Biotechnol Appl Biochem 60(3):316–322CrossRefGoogle Scholar
  25. 25.
    Mecham JO, Rowitch D, Wallace CD et al (1983) The metabolic defect of methionine dependence occurs frequently in human tumor cell lines. Biochem Biophys Res Commun 117:429–434CrossRefGoogle Scholar
  26. 26.
    Hoffman RM, Erbe RW (1976) High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc Natl Acad Sci U S A 73:1523–1527CrossRefGoogle Scholar
  27. 27.
    Hoffman RM (1984) Altered methionine metabolism, DNA methylation, and oncogene expression in carcinogenesis: a review and symthesis. Biochim Biophys Acta 738:49–87PubMedGoogle Scholar
  28. 28.
    Guo H, Herrera H, Groce A, Hoffman RM (1993) Expression of the biochemical defect of methionine dependence in fresh patient tumors in primary histoculture. Cancer Res 53:2479–2483PubMedGoogle Scholar
  29. 29.
    Tisdale M, Eridani S (1981) Methionine requirement of normal and leukaemic haemopoietic cells in short term cultures. Leuk Res 5:385–394CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. S. Pokrovsky
    • 1
    • 2
  • N. Yu. Anisimova
    • 1
  • D. Zh. Davydov
    • 1
  • S. V. Bazhenov
    • 3
    • 4
  • N. V. Bulushova
    • 3
  • G. B. Zavilgelsky
    • 3
  • V. Y. Kotova
    • 3
  • I. V. Manukhov
    • 3
    • 4
  1. 1.Laboratory of Combined TreatmentN.N. Blokhin Cancer Research CenterMoscowRussia
  2. 2.Department of BiochemistryPeople’s Friendship University (RUDN University)MoscowRussia
  3. 3.State Research Institute of Genetics and Selection of Industrial MicroorganismsMoscowRussia
  4. 4.Laboratory of Molecular GeneticsMoscow Institute of Physics and Technology, DolgoprudnyMoscow RegionRussia

Personalised recommendations