Methods to Study the Role of Methionine-Restricted Diet and Methioninase in Cancer Growth Control

  • Shushma Chaturvedi
  • Joseph R. BertinoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1866)


Cancer cells require exogenous methionine for survival and therefore methionine restriction is a promising avenue for treatment. The basis for methionine dependence in cancer cells is still not entirely clear. While the lack of the methionine salvage enzyme methylthioadenosine phosphorylase (MTAP) is associated with methionine auxotrophy in cancer cells, there are other causes for tumors to require exogenous methionine. Restricting methionine by diet or by enzyme depletion, alone or in combination with certain chemotherapeutics, is a promising antitumor strategy.

Key words

Methionine Methioninase Homocysteine Suspension cultures Adherent cells 


  1. 1.
    Hoffman RM (2015) Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: a 40-year odyssey. Expert Opin Biol Ther 15:21–31CrossRefGoogle Scholar
  2. 2.
    Yoshioka T, Wada T, Uchida N, Maki H, Yoshida H, Ide N, Kasai H, Hojo K, Shono K, Maekawa R, Yagi S, Hoffman RM, Sugita K (1998) Anticancer efficacy in vivo and in vitro, synergy with 5-fluorouracil, and safety of recombinant methioninase. Cancer Res 58(12):2583–2587PubMedGoogle Scholar
  3. 3.
    Tan Y, Sun X, Xu M, Tan X-Z, Sasson A, Rashidi B, Han Q, Tan X-Y, Wang X, An Z, Sun F-X, Hoffman RM (1999) Efficacy of recombinant methioninase in combination with cisplatin on human colon tumors in nude mice. Clin Cancer Res 5:2157–2163PubMedGoogle Scholar
  4. 4.
    Kokkinakis DM, Hoffman RM, Frenkel EP, Wick JB, Han Q, Xu M, Tan Y, Schold SC (2001) Synergy between methionine stress and chemotherapy in the treatment of brain tumor xenografts in athymic mice. Cancer Res 61:4017–4023PubMedGoogle Scholar
  5. 5.
    Miki K, Xu M, An Z, Wang X, Yang M, Al-Refaie W, Sun X, Baranov E, Tan Y, Chishima T, Shimada H, Moossa AR, Hoffman RM (2000) Survival efficacy of the combination of the methioninase gene and methioninase in a lung cancer orthotopic model. Cancer Gene Ther 7:332–338CrossRefGoogle Scholar
  6. 6.
    Tan Y, Xu M, Guo H, Sun X, Kubota T, Hoffman RM (1996) Anticancer efficacy of methioninase in vivo. Anticancer Res 16(6C):3931–3936PubMedGoogle Scholar
  7. 7.
    Muharram MM (2016) Recombinant engineering of L-methioninase using two different promoter and expression systems and in vitro analysis of its anticancer efficacy on different human cancer cell lines. Pak J Biol Sci 19(3):106–114. Scholar
  8. 8.
    Tan Y, Xu M, Hoffman RM (2010) Broad selective efficacy of recombinant methioninase and polyethylene glycol-modified recombinant methioninase on cancer cells in vitro. Anticancer Res 30(4):1041–1046PubMedGoogle Scholar
  9. 9.
    Murakami T, Li S, Han Q, Tan Y, Kiyuna T, Igarashi K, Kawaguchi K, Hwang HK, Miyaki K, Singh AS, Nelson SD, Dry SM, Li Y, Hiroshima Y, Lwin TM, DeLong JC, Chishima T, Tanaka K, Bouvet M, Endo I, Eilber FC, Hoffman RM (2017) Recombinant methioninase effectively targets a Ewing's sarcoma in a patient-derived orthotopic xenograft (PDOX) nude-mouse model. Oncotarget 8(22):35630–35638. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Rutgers Cancer Institute of New JerseyNew BrunswickUSA

Personalised recommendations