Advertisement

Xenopus pp 217-231 | Cite as

Dye Electroporation and Imaging of Calcium Signaling in Xenopus Nervous System

  • Lukas Weiss
  • Thomas Offner
  • Thomas Hassenklöver
  • Ivan ManziniEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1865)

Abstract

Electroporation is an efficient method of transferring charged macromolecules into living cells in order to study their morphology, function, and connectivity within neuronal networks. Labeling cells with fluorophore-coupled macromolecules can be used to trace projections of whole neuronal ensembles, as well as the fine morphology of single cells. Here, we present a protocol to visualize pre- and postsynaptic components of a sensory relay synapse in the brain, using the olfactory system of Xenopus laevis tadpoles as a model. We apply bulk electroporation to trace projections of receptor neurons from the nose to the brain, and single cell electroporation to visualize the morphology of their synaptic target cells, the mitral-tufted cells. Labeling the receptor neurons with a calcium-sensitive dye allows us to record stimulus-induced presynaptic input to the dendrites of the postsynaptic cells via functional calcium imaging.

Key words

Electroporation Neuronal tracing Single cell morphology Fluorescent dyes Calcium imaging In vivo imaging Xenopus laevis Olfactory system Olfactory receptor neurons Mitral-tufted cells 

References

  1. 1.
    Haas K, Sin WC, Javaherian A, Li Z, Cline HT (2001) Single-cell electroporation for gene transfer in vivo. Neuron 29(3):583–591CrossRefGoogle Scholar
  2. 2.
    Chen C, Smye SW, Robinson MP, Evans JA (2006) Membrane electroporation theories: a review. Med Biol Eng Comput 44(1–2):5–14CrossRefGoogle Scholar
  3. 3.
    Ho SY, Mittal GS (1996) Electroporation of cell membranes: a review. Crit Rev Biotechnol 16(4):349–362CrossRefGoogle Scholar
  4. 4.
    Neumann E, Kakorin S, Tœnsing K (1999) Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg 48(1):3–16CrossRefGoogle Scholar
  5. 5.
    Falk J, Drinjakovic J, Leung KM, Dwivedy A, Regan AG, Piper M, Holt CE (2007) Electroporation of cDNA/Morpholinos to targeted areas of embryonic CNS in Xenopus. BMC Dev Biol 7(107):1–16Google Scholar
  6. 6.
    Miyasaka N, Arimatsu Y, Takiguchihayashi K (1999) Foreign gene expression in an organotypic culture of cortical anlage after in vivo electroporation. Neuroreport 10(11):2319–2323CrossRefGoogle Scholar
  7. 7.
    Araki I, Nakamura H (1999) Engrailed defines the position of dorsal di-mesencephalic boundary by repressing diencephalic fate. Development 126(22):5127–5135PubMedGoogle Scholar
  8. 8.
    De Vry J, Martínez-Martínez P, Losen M, Temela Y, Steckler T, Steinbusch HWM, De Baets MH, Prickaerts J (2010) In vivo electroporation of the central nervous system: a non-viral approach for targeted gene delivery. Prog Neurobiol 92(3):227–244CrossRefGoogle Scholar
  9. 9.
    Haas K, Jensen K, Sin WC, Foa L, Cline HT (2002) Targeted electroporation in Xenopus tadpoles in vivo – from single cells to the entire brain. Differentiation 70(4–5):148–154CrossRefGoogle Scholar
  10. 10.
    Hovis KR, Padmanabhan K, Urban NN (2010) A simple method of in vitro electroporation allows visualization, recording, and calcium imaging of local neuronal circuits. J Neurosci Methods 191(1):1–10CrossRefGoogle Scholar
  11. 11.
    Bestman JE, Ewald RC, Chiu S-L, Cline HT (2006) In vivo single-cell electroporation for transfer of DNA and macromolecules. Nat Protoc 1(3):1267–1272CrossRefGoogle Scholar
  12. 12.
    Cline H, Haas K (2008) The regulation of dendritic arbor development and plasticity by glutamatergic synaptic input: a review of the synaptotrophic hypothesis. J Physiol 586(6):1509–1517CrossRefGoogle Scholar
  13. 13.
    Hewapathirane DS, Haas K (2008) Single cell electroporation in vivo within the intact developing brain. J Vis Exp 17:e705Google Scholar
  14. 14.
    Hassenklöver T, Manzini I (2014) The olfactory system as a model to study axonal growth patterns and morphology in vivo. J Vis Exp 92:e52143Google Scholar
  15. 15.
    Kassing V, Engelmann J, Kurtz R (2013) Monitoring of single-cell responses in the optic tectum of adult zebrafish with dextran-coupled calcium dyes delivered via local electroporation. PLoS One 8(5):1–10CrossRefGoogle Scholar
  16. 16.
    Gliem S, Syed AS, Sansone A, Kludt E, Tantalaki E, Hassenklöver T, Korsching SI, Manzini I (2013) Bimodal processing of olfactory information in an amphibian nose: odor responses segregate into a medial and a lateral stream. Cell Mol Life Sci 70(11):1965–1984CrossRefGoogle Scholar
  17. 17.
    Hassenklöver T, Manzini I (2013) Olfactory wiring logic in amphibians challenges the basic assumptions of the unbranched axon concept. J Neurosci 33(44):17247–17252CrossRefGoogle Scholar
  18. 18.
    Nieuwkoop PD, Faber J (1994) Normal table of Xenopus laevis (daudin). Garland Publishing Inc, New York, NYGoogle Scholar
  19. 19.
    Caprio J, Byrd RP (1984) Electrophysiological evidence for acidic, basic, and neutral amino acid olfactory sites in the catfish. J Gen Physiol 84:403–422CrossRefGoogle Scholar
  20. 20.
    Manzini I, Schild D (2004) Classes and narrowing selectivity of olfactory receptor neurons of Xenopus laevis tadpoles. J Gen Physiol 123:9–107CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lukas Weiss
    • 1
  • Thomas Offner
    • 1
    • 2
  • Thomas Hassenklöver
    • 1
  • Ivan Manzini
    • 1
    • 2
    Email author
  1. 1.Department of Animal Physiology and Molecular Biomedicine, Institute of Animal PhysiologyJustus-Liebig-University GiessenGiessenGermany
  2. 2.Center for Nanoscale Microscopy and Molecular Physiology of the BrainUniversity of GöttingenGöttingenGermany

Personalised recommendations