Biolistic Transformation of Wheat

  • Bin Tian
  • Mónica Navia-Urrutia
  • Yueying Chen
  • Jordan Brungardt
  • Harold N. Trick
Part of the Methods in Molecular Biology book series (MIMB, volume 1864)


Biolistic transformation of wheat is one of the most commonly used methods for gene function study and trait discovery. It has been widely adapted as a fundamental platform to generate wheat plants with new traits and has become a powerful tool for facilitating the crop improvement. In this chapter, we present a complete and straightforward protocol for wheat transformation via biolistic bombardment system. Although wheat is still one of the hardest plant species to transform, this protocol offers an optimized and efficient system to produce transgenic plants. To demonstrate the application of this protocol, in this chapter we describe an example of obtaining transgenic wheat by the co-bombardment of two plasmids, containing a green fluorescent protein gene and a glufosinate herbicide selection gene, respectively. In addition, procedures for the screening and testing of putative transgenic plants are described. This protocol has been successfully applied to generate stable transgenic bread wheat (Triticum aestivum) in both spring and winter varieties.

Key words

Wheat Biolistics Particle bombardment Embryogenic callus Genome editing GFP 


  1. 1.
    Shewry PR (2009) Wheat. J Exp Bot 60(6):1537–1553. CrossRefPubMedGoogle Scholar
  2. 2.
    Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable Embryogenic callus. Nat Biotech 10(6):667–674CrossRefGoogle Scholar
  3. 3.
    Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by agrobacterium tumefaciens. Plant Physiol 115(3):971–980. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TT, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15(3):305–327. CrossRefGoogle Scholar
  5. 5.
    Harwood WA (2012) Advances and remaining challenges in the transformation of barley and wheat. J Exp Bot 63(5):1791–1798. CrossRefPubMedGoogle Scholar
  6. 6.
    Ulker B, Li Y, Rosso MG, Logemann E, Somssich IE, Weisshaar B (2008) T-DNA-mediated transfer of Agrobacterium tumefaciens chromosomal DNA into plants. Nat Biotech 26(9):1015–1017 CrossRefGoogle Scholar
  7. 7.
    Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu J-L, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Liu W, Yuan JS, Stewart CN Jr (2013) Advanced genetic tools for plant biotechnology. Nat Rev Genet 14(11):781–793. CrossRefPubMedGoogle Scholar
  9. 9.
    Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11(7):323–328. CrossRefPubMedGoogle Scholar
  10. 10.
    Shi G, Zhang Z, Friesen TL, Raats D, Fahima T, Brueggeman RS, Lu S, Trick HN, Liu Z, Chao W, Frenkel Z, Xu SS, Rasmussen JB, Faris JD (2016) The hijacking of a receptor kinase–driven pathway by a wheat fungal pathogen leads to disease. Sci Adv 2(10):e1600822. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Makandar R, Nalam VJ, Chowdhury Z, Sarowar S, Klossner G, Lee H, Burdan D, Trick HN, Gobbato E, Parker JE, Shah J (2015) The Combined Action of ENHANCED DISEASE SUSCEPTIBILITY1, PHYTOALEXIN DEFICIENT4, and SENESCENCE-ASSOCIATED101 Promotes Salicylic Acid-Mediated Defenses to Limit Fusarium graminearum Infection in Arabidopsis thaliana. Mol Plant-Microbe Interact 28(8):943–953. CrossRefPubMedGoogle Scholar
  12. 12.
    Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, Akhunov E, Dubcovsky J (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341(6147):783–786. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lin Z, Li X, Shannon LM, Yeh C-T, Wang ML, Bai G, Peng Z, Li J, Trick HN, Clemente TE, Doebley J, Schnable PS, Tuinstra MR, Tesso TT, White F, Yu J (2012) Parallel domestication of the Shattering1 genes in cereals. Nat Genet 44(6):720–724 CrossRefGoogle Scholar
  14. 14.
    Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18(4):675–689CrossRefGoogle Scholar
  15. 15.
    Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5(3):213–218CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Bin Tian
    • 1
  • Mónica Navia-Urrutia
    • 1
  • Yueying Chen
    • 1
  • Jordan Brungardt
    • 1
  • Harold N. Trick
    • 1
  1. 1.Department of Plant PathologyKansas State UniversityManhattanUSA

Personalised recommendations