Advertisement

Setaria viridis as a Model Plant for Functional Genomic Studies in C4 Crops

  • Polyana Kelly Martins
  • Bárbara Andrade Dias Brito da Cunha
  • Adilson Kenji Kobayshi
  • Hugo Bruno Correa Molinari
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1864)

Abstract

Setaria viridis is an emerging model for C4 species, and it is an important model to validate some genes for further C4 crop transformation, such as sugarcane, maize, and wheat. Here, we describe two protocols for stable transformation of S. viridis mediated by Agrobacterium tumefaciens with three different reporter genes and two selectable markers. Routine transformation efficiency reaching 29% was achieved using embryogenic callus in S. viridis (accession A10.1). Alternatively, we developed a transformation method by floral dip with 0.6% efficiency. The developed protocols could be useful for genetic and genomics studies of important food-feed-fiber-fuel C4 crops.

Key words

Embryogenic callus Floral dip Transformation Agrobacterium Grasses 

References

  1. 1.
    Diao X, Schnable J, Bennetzen JL (2014) Initiation of Setaria as a model plant. Front Agr Sci Eng 1:16–20.  https://doi.org/10.15302/j-fase-2014011 CrossRefGoogle Scholar
  2. 2.
    Muthamilarasan M, Prasad M (2015) Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theor Appl Genet 128:1–14.  https://doi.org/10.1007/s00122-014-2399-3 CrossRefPubMedGoogle Scholar
  3. 3.
    Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561.  https://doi.org/10.1038/nbt.2196 CrossRefPubMedGoogle Scholar
  4. 4.
    Martins PK, Ribeiro AP, da Cunha BADB, Kobayashi AK, Molinari HBC (2015) A simple and highly efficient Agrobacterium-mediated transformation protocol for Setaria viridis. Biotechnol Rep 6:41–44.  https://doi.org/10.1016/j.btre.2015.02.002 CrossRefGoogle Scholar
  5. 5.
    Martins PK, Nakayama TJ, Ribeiro AP, da Cunha BADB, Nepomuceno AL, Harmon FG, Kobayashi AK, Molinari HBC (2015) Setaria viridis floral-dip: a simple and rapid Agrobacterium-mediated transformation method. Biotechnol Rep 6:61–63.  https://doi.org/10.1016/j.btre.2015.02.006 CrossRefGoogle Scholar
  6. 6.
    Ribeiro AP, de Souza WR, Martins PK, Vinecky F, Duarte KE, Basso MF et al (2017) Overexpression of BdMATE gene improves aluminum tolerance in Setaria viridis. Front Plant Sci 8:865.  https://doi.org/10.3389/fpls.2017.00865 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Vasconcelos VDB (2014) Avaliação funcional do promotor do gene anatrC de Aspergillus nidulans na planta modelo Setaria viridis. Dissertation, Federal University of LavrasGoogle Scholar
  8. 8.
    Duarte KE (2014) Análise funcional do gene órfão CcUNK8 de Coffea canephora via transformação genética de Setaria viridis. Dissertation, Federal University of LavrasGoogle Scholar
  9. 9.
    Van Eck J, Swartwood K (2015) Setaria viridis. In: Wang K (ed) Methods in molecular biology, Agrobacterium protocols, vol 1. Springer Science + Business Media, New York, pp 57–67Google Scholar
  10. 10.
    Zale JM, Agarwal S, Loar S, Steber CM (2009) Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Rep 28:903–913.  https://doi.org/10.1007/s00299-009-0696-0 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Liu W, Zheng MY, Polle EA, Konzak CF (2002) Highly efficient doubled-haploid production in wheat (Triticum aestivum L.) via induced microspore embryogenesis. Crop Sci 42(3):686–692CrossRefGoogle Scholar
  12. 12.
    Rod-in W, Sujipuli K, Ratanasut K (2014) The floral-dip method for rice (Oryza sativa) transformation. J Agric Technol 10(2):467–474Google Scholar
  13. 13.
    Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218.  https://doi.org/10.1007/BF01969712 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497CrossRefGoogle Scholar
  15. 15.
    Mann DGJ, LaFayette PR, Abercrombie LL, King ZR, Mazarei M, Halter MC et al (2012) Gateway-compatible vectors for high-throughput gene functional analysis in switchgrass (Panicum virgatum L.) and other monocot species. Plant Biotechnol J 10:226–236.  https://doi.org/10.1111/j.1467-7652.2011.00658.x CrossRefPubMedGoogle Scholar
  16. 16.
    Fursova O, Pogorelko G, Zabotina OA (2012) An efficient method for transient gene expression in monocots applied to modify the Brachypodium distachyon cell wall. Ann Bot 110:47–56.  https://doi.org/10.1093/aob/mcs103 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Polyana Kelly Martins
    • 1
  • Bárbara Andrade Dias Brito da Cunha
    • 1
  • Adilson Kenji Kobayshi
    • 1
  • Hugo Bruno Correa Molinari
    • 1
  1. 1.Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Parque Estação BiológicaBrasíliaBrazil

Personalised recommendations