Developing Transgenic Agronomic Traits for Crops: Targets, Methods, and Challenges

  • John P. Davies
  • Cory A. Christensen
Part of the Methods in Molecular Biology book series (MIMB, volume 1864)


The last two decades have witnessed a surge of investment by the agricultural biotechnology industry in the development of transgenic agronomic traits. These are traits that improve yield performance by modifying endogenous physiological processes such as energy capture, nutrient utilization, and stress tolerance. In this chapter we provide a foundation for understanding these fundamental processes and then outline approaches that have been taken to use this knowledge for yield improvement. We characterize the current status of product development pipelines in the industry and illustrate the trait discovery process with three important examples—bacterial cold-shock proteins, alanine aminotransferase, and auxin-regulated genes. The challenges with developing and commercializing an agronomic trait product are discussed.

Key words

Transgenic traits Agronomic traits Yield Nitrogen-use efficiency Stress tolerance 


  1. 1.
    Klümper W, Qaim M (2014) A meta-analysis of the impacts of genetically modified crops. PLoS One 9(11):e111629PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ricroch AE, Hénard-Damave M-C (2016) Next biotech plants: new traits, crops, developers and technologies for addressing global challenges. Crit Rev Biotechnol 36(4):675–690PubMedGoogle Scholar
  3. 3.
    Parisi C, Tillie P, Rodríguez-Cerezo E (2016) The global pipeline of GM crops out to 2020. Nat Biotechnol 34(1):31PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    McDougall P (2011) The cost and time involved in the discovery, development and authorisation of a new plant biotechnology derived trait. Consultancy Study for Crop Life InternationalGoogle Scholar
  5. 5.
    Prado JR, Segers G, Voelker T, Carson D, Dobert R, Phillips J, Cook K, Cornejo C, Monken J, Grapes L (2014) Genetically engineered crops: from idea to product. Annu Rev Plant Biol 65:769–790PubMedCrossRefGoogle Scholar
  6. 6.
    Wu A, Song Y, Van Oosterom EJ, Hammer GL (2016) Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement. Front Plant Sci 7:1518PubMedPubMedCentralGoogle Scholar
  7. 7.
    White AC, Rogers A, Rees M, Osborne CP (2015) How can we make plants grow faster? A source–sink perspective on growth rate. J Exp Bot 67(1):31–45PubMedCrossRefGoogle Scholar
  8. 8.
    Zhu X-G, de Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145(2):513–526PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Zhu X-G, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19(2):153–159PubMedCrossRefGoogle Scholar
  10. 10.
    Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner M, Junge W, Kramer DM, Melis A (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332(6031):805–809PubMedCrossRefGoogle Scholar
  11. 11.
    Zhu XG, Ort DR, Whitmarsh J, Long SP (2004) The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. J Exp Bot 55(400):1167–1175PubMedCrossRefGoogle Scholar
  12. 12.
    Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354(6314):857–861PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628PubMedCrossRefGoogle Scholar
  14. 14.
    Farquhar GD, von Caemmerer S, Berry JA (2001) Models of photosynthesis. Plant Physiol 125(1):42–45PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Farquhar G, Von Caemmerer S (1982) Modelling of photosynthetic response to environmental conditions. In: Physiological plant ecology II. Springer, Berlin Heidelberg, pp 549–587CrossRefGoogle Scholar
  16. 16.
    Long SP, Marshall-Colon A, Zhu X-G (2015) Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161(1):56–66PubMedCrossRefGoogle Scholar
  17. 17.
    von Caemmerer S, Quick WP, Furbank RT (2012) The development of C4 rice: current progress and future challenges. Science 336(6089):1671–1672CrossRefGoogle Scholar
  18. 18.
    McGrath JM, Long SP (2014) Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis. Plant Physiol 164(4):2247–2261PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch H-J, Rosenkranz R, Stäbler N, Schönfeld B, Kreuzaler F, Peterhänsel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25(5):593–599PubMedCrossRefGoogle Scholar
  20. 20.
    Peterhansel C, Krause K, Braun HP, Espie G, Fernie A, Hanson D, Keech O, Maurino V, Mielewczik M, Sage R (2013) Engineering photorespiration: current state and future possibilities. Plant Biol 15(4):754–758PubMedCrossRefGoogle Scholar
  21. 21.
    South P, Ort DR (2017) Engineering biochemical bypass to photorespiration to improve photosynthesis and crop production. FASEB J 31(1 Supplement):628.623Google Scholar
  22. 22.
    de FC Carvalho J, Madgwick PJ, Powers SJ, Keys AJ, Lea PJ, Parry MA (2011) An engineered pathway for glyoxylate metabolism in tobacco plants aimed to avoid the release of ammonia in photorespiration. BMC Biotechnol 11(1):111CrossRefGoogle Scholar
  23. 23.
    Maier A, Fahnenstich H, Von Caemmerer S, Engqvist MK, Weber AP, Flügge U-I, Maurino VG (2012) Transgenic introduction of a glycolate oxidative cycle into A. thaliana chloroplasts leads to growth improvement. Front Plant Sci 3:38PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Egli DB (2004) Seed-fill duration and yield of grain crops. Adv Agron 83:243–279CrossRefGoogle Scholar
  25. 25.
    Guo Y, Gan S-S (2014) Translational researches on leaf senescence for enhancing plant productivity and quality. J Exp Bot 65(14):3901–3913PubMedCrossRefGoogle Scholar
  26. 26.
    Kant S, Burch D, Badenhorst P, Palanisamy R, Mason J, Spangenberg G (2015) Regulated expression of a cytokinin biosynthesis gene IPT delays leaf senescence and improves yield under rainfed and irrigated conditions in canola (Brassica napus L.). PLoS One 10(1):e0116349PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14(3):290–295PubMedCrossRefGoogle Scholar
  28. 28.
    Robson PR, Donnison IS, Wang K, Frame B, Pegg SE, Thomas A, Thomas H (2004) Leaf senescence is delayed in maize expressing the Agrobacterium IPT gene under the control of a novel maize senescence-enhanced promoter. Plant Biotechnol J 2(2):101–112. CrossRefPubMedGoogle Scholar
  29. 29.
    Kraiser T, Gras DE, Gutiérrez AG, González B, Gutiérrez RA (2011) A holistic view of nitrogen acquisition in plants. J Exp Bot 62(4):1455–1466PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Moll R, Kamprath E, Jackson W (1987) Development of nitrogen-efficient prolific hybrids of maize. Crop Sci 27(2):181–186CrossRefGoogle Scholar
  31. 31.
    Han M, Okamoto M, Beatty PH, Rothstein SJ, Good AG (2015) The genetics of nitrogen use efficiency in crop plants. Annu Rev Genet 49:269–289PubMedCrossRefGoogle Scholar
  32. 32.
    Below FE, Christensen LE, Reed AJ, Hageman RH (1981) Availability of reduced N and carbohydrates for ear development of maize. Plant Physiol 68(5):1186–1190PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Cliquet J-B, Deléens E, Mariotti A (1990) C and N mobilization from stalk and leaves during kernel filling by 13C and 15N tracing in Zea mays L. Plant Physiol 94(4):1547–1553PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Yadav UP, Ayre BG, Bush DR (2015) Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: assessing the potential to improve crop yields and nutritional quality. Front Plant Sci 6:275PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Good AG, Johnson SJ, De Pauw M, Carroll RT, Savidov N, Vidmar J, Lu Z, Taylor G, Stroeher V (2007) Engineering nitrogen use efficiency with alanine aminotransferase. Can J Bot 85(3):252–262. CrossRefGoogle Scholar
  36. 36.
    Shrawat AK, Carroll RT, DePauw M, Taylor GJ, Good AG (2008) Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol J 6(7):722–732PubMedCrossRefGoogle Scholar
  37. 37.
    Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Tercé-Laforgue T, Quilleré I, Coque M, Gallais A, Gonzalez-Moro M-B, Bethencourt L, Habash DZ, Lea PJ, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards KJ, Hirel B (2006) Two Cytosolic Glutamine Synthetase Isoforms of Maize Are Specifically Involved in the Control of Grain Production. Plant Cell 18(11):3252–3274. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Thomsen HC, Eriksson D, Møller IS, Schjoerring JK (2014) Cytosolic glutamine synthetase: a target for improvement of crop nitrogen use efficiency? Trends Plant Sci 19(10):656–663PubMedCrossRefGoogle Scholar
  39. 39.
    Selvaraj MG, Valencia MO, Ogawa S, Lu Y, Wu L, Downs C, Skinner W, Lu Z, Kridl JC, Ishitani M (2017) Development and field performance of nitrogen use efficient rice lines for Africa. Plant Biotechnol J 15(6):775–787PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Tabuchi M, Abiko T, Yamaya T (2007) Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J Exp Bot 58(9):2319–2327PubMedCrossRefGoogle Scholar
  41. 41.
    Abiko T, Wakayama M, Kawakami A, Obara M, Kisaka H, Miwa T, Aoki N, Ohsugi R (2010) Changes in nitrogen assimilation, metabolism, and growth in transgenic rice plants expressing a fungal NADP(H)-dependent glutamate dehydrogenase (gdhA). Planta 232(2):299–311. CrossRefPubMedGoogle Scholar
  42. 42.
    Zhou Y, Liu H, Zhou X, Yan Y, Du C, Li Y, Liu D, Zhang C, Deng X, Tang D (2014) Over-expression of a fungal NADP (H)-dependent glutamate dehydrogenase PcGDH improves nitrogen assimilation and growth quality in rice. Mol Breed 34(2):335–349CrossRefGoogle Scholar
  43. 43.
    Tercé-Laforgue T, Bedu M, Dargel-Grafin C, Dubois F, Gibon Y, Restivo FM, Hirel B (2013) Resolving the role of plant glutamate dehydrogenase: II. Physiological characterization of plants overexpressing the two enzyme subunits individually or simultaneously. Plant Cell Physiol 54(10):1635–1647PubMedCrossRefGoogle Scholar
  44. 44.
    Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41(4):494–497PubMedCrossRefGoogle Scholar
  45. 45.
    Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q (2014) Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet 46(6):652–656PubMedCrossRefGoogle Scholar
  46. 46.
    Wang Z, Chen X, Wang J, Liu T, Liu Y, Zhao L, Wang G (2007) Increasing maize seed weight by enhancing the cytoplasmic ADP-glucose pyrophosphorylase activity in transgenic maize plants. Plant Cell Tissue Organ Cult 88(1):83–92CrossRefGoogle Scholar
  47. 47.
    Meyer FD, Smidansky ED, Beecher B, Greene TW, Giroux MJ (2004) The maize Sh2r6hs ADP-glucose pyrophosphorylase (AGP) large subunit confers enhanced AGP properties in transgenic wheat (Triticum aestivum). Plant Sci 167(4):899–911CrossRefGoogle Scholar
  48. 48.
    Zhang L, Häusler RE, Greiten C, Hajirezaei MR, Haferkamp I, Neuhaus HE, Flügge UI, Ludewig F (2008) Overriding the co-limiting import of carbon and energy into tuber amyloplasts increases the starch content and yield of transgenic potato plants. Plant Biotechnol J 6(5):453–464PubMedCrossRefGoogle Scholar
  49. 49.
    Jonik C, Sonnewald U, Hajirezaei MR, Flügge UI, Ludewig F (2012) Simultaneous boosting of source and sink capacities doubles tuber starch yield of potato plants. Plant Biotechnol J 10(9):1088–1098PubMedCrossRefGoogle Scholar
  50. 50.
    Busov VB, Brunner AM, Strauss SH (2008) Genes for control of plant stature and form. New Phytol 177(3):589–607PubMedCrossRefGoogle Scholar
  51. 51.
    Gonzalez N, Beemster GT, Inzé D (2009) David and Goliath: what can the tiny weed Arabidopsis teach us to improve biomass production in crops? Curr Opin Plant Biol 12(2):157–164PubMedCrossRefGoogle Scholar
  52. 52.
    Krizek BA (2009) Making bigger plants: key regulators of final organ size. Curr Opin Plant Biol 12(1):17–22PubMedCrossRefGoogle Scholar
  53. 53.
    Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16(4):237–251PubMedCrossRefGoogle Scholar
  54. 54.
    Pucciariello C, Voesenek LA, Perata P, Sasidharan R (2014) Plant responses to flooding. Front Plant Sci 5Google Scholar
  55. 55.
    Septiningsih EM, Collard BC, Heuer S, Bailey-Serres J, Ismail AM, Mackill DJ (2013) Applying genomics tools for breeding submergence tolerance in rice. In: Translational genomics for crop breeding: abiotic stress, yield and quality, vol 2, pp 9–30CrossRefGoogle Scholar
  56. 56.
    Agency FEM (1995) National mitigation strategy-partnerships for building safer communitiesGoogle Scholar
  57. 57.
    Meister R, Rajani M, Ruzicka D, Schachtman DP (2014) Challenges of modifying root traits in crops for agriculture. Trends Plant Sci 19(12):779–788PubMedCrossRefGoogle Scholar
  58. 58.
    Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112(2):347–357PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Gao Y, Lynch JP (2016) Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.). J Exp Bot 67(15):4545–4557PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11(8):405–412PubMedCrossRefGoogle Scholar
  61. 61.
    Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45(9):1097–1102PubMedCrossRefGoogle Scholar
  62. 62.
    Xue D, Zhang X, Lu X, Chen G, Chen Z-H (2017) Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front Plant Sci 8Google Scholar
  63. 63.
    Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679PubMedCrossRefGoogle Scholar
  64. 64.
    Habben JE, Bao X, Bate NJ, DeBruin JL, Dolan D, Hasegawa D, Helentjaris TG, Lafitte RH, Lovan N, Mo H, Reimann K, Schussler JR (2014) Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions. Plant Biotechnol J 12(6):685–693. CrossRefPubMedGoogle Scholar
  65. 65.
    Okamoto M, Peterson FC, Defries A, Park S-Y, Endo A, Nambara E, Volkman BF, Cutler SR (2013) Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc Natl Acad Sci 110(29):12132–12137PubMedCrossRefGoogle Scholar
  66. 66.
    González-Guzmán M, Rodríguez L, Lorenzo-Orts L, Pons C, Sarrión-Perdigones A, Fernández MA, Peirats-Llobet M, Forment J, Moreno-Alvero M, Cutler SR (2014) Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance. J Exp Bot 65(15):4451–4464PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci 6Google Scholar
  68. 68.
    Agarwal PK, Shukla PS, Gupta K, Jha B (2013) Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol 54(1):102–123PubMedCrossRefGoogle Scholar
  69. 69.
    Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449PubMedCrossRefGoogle Scholar
  70. 70.
    McCabe MS, Garratt LC, Schepers F, Jordi WJRM, Stoopen GM, Davelaar E, van Rhijn JHA, Power JB, Davey MR (2001) Effects of P-SAG12-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol 127(2):505–516. CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104(49):19631–19636. CrossRefPubMedGoogle Scholar
  72. 72.
    Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol J 9(7):747–758. CrossRefPubMedGoogle Scholar
  73. 73.
    Huynh LN, VanToai T, Streeter J, Banowetz G (2005) Regulation of flooding tolerance of SAG12:ipt Arabidopsis plants by cytokinin. J Exp Bot 56(415):1397–1407. CrossRefGoogle Scholar
  74. 74.
    Li Q, Robson P, Bettany A, Donnison I, Thomas H, Scott I (2004) Modification of senescence in ryegrass transformed with IPT under the control of a monocot senescence-enhanced promoter. Plant Cell Rep 22(11):816–821PubMedCrossRefGoogle Scholar
  75. 75.
    Meyerowitz EM (1989) Arabidopsis, a useful weed. Cell 56(2):263–269PubMedCrossRefGoogle Scholar
  76. 76.
    Buell CR, Last RL (2010) Twenty-first century plant biology: impacts of the arabidopsis genome on plant biology and agriculture. Plant Physiol 154(2):497–500. CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, Van Esse HP, Smoker M, Rallapalli G, Thomma BP, Staskawicz B (2010) Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 28(4):365–369PubMedCrossRefGoogle Scholar
  78. 78.
    Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KN, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci 104(39):15270–15275. CrossRefPubMedGoogle Scholar
  79. 79.
    Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Krolikowski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci 104(42):16450–16455. CrossRefPubMedGoogle Scholar
  80. 80.
    Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Görlach J (2001) Growth stage–based phenotypic analysis of Arabidopsis a model for high throughput functional genomics in plants. Plant Cell 13(7):1499–1510PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kjemtrup S, Boyes DC, Christensen C, McCaskill AJ, Hylton M, Davis K (2003) Growth stage-based phenotypic profiling of plants. In: Grotewold E (ed) Plant functional genomics. Humana Press, Totowa, NJ, pp 427–441. CrossRefGoogle Scholar
  82. 82.
    Christensen CA, Feldmann KA (2007) Biotechnology approaches to engineering drought tolerant crop. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht, pp 333–357. CrossRefGoogle Scholar
  83. 83.
    Haas BJ, Volfovsky N, Town CD, Troukhan M, Alexandrov N, Feldmann KA, Flavell RB, White O, Salzberg SL (2002) Full-length messenger RNA sequences greatly improve genome annotation. Genome Biol 3(6):research0029.0021. CrossRefGoogle Scholar
  84. 84.
    Riechmann JL, Heard J, Martin G, Reuber L, Jiang C-Z, Keddie J, Adam L, Pineda O, Ratcliffe O, Samaha R (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290(5499):2105–2110PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Walsh TA, Neal R, Merlo AO, Honma M, Hicks GR, Wolff K, Matsumura W, Davies JP (2006) Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in Arabidopsis. Plant Physiol 142(2):542–552. CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Walsh TA, Bauer T, Neal R, Merlo AO, Schmitzer PR, Hicks GR, Honma M, Matsumura W, Wolff K, Davies JP (2007) Chemical genetic identification of glutamine phosphoribosylpyrophosphate amidotransferase as the target for a novel bleaching herbicide in Arabidopsis. Plant Physiol 144(3):1292–1304. CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Luhua S, Hegie A, Suzuki N, Shulaev E, Luo X, Cenariu D, Ma V, Kao S, Lim J, Gunay MB (2013) Linking genes of unknown function with abiotic stress responses by high-throughput phenotype screening. Physiol Plant 148(3):322–333CrossRefGoogle Scholar
  88. 88.
    Fahlgren N, Gehan MA, Baxter I (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr Opin Plant Biol 24:93–99CrossRefGoogle Scholar
  89. 89.
    Alimentarius C (2003) Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants. CAC/GL 45:1–18Google Scholar
  90. 90.
    Nations FaAOotU (2001) Evaluation of allergenicity of genetically modified foods. Food and Agriculture Organization of the United Nations (FAO)Google Scholar
  91. 91.
    Kuiper HA, Kleter GA, Noteborn HP, Kok EJ (2001) Assessment of the food safety issues related to genetically modified foods. Plant J 27(6):503–528PubMedCrossRefGoogle Scholar
  92. 92.
    Organization WH (2009) Foods derived from modern biotechnology. Foods derived from modern biotechnology (Ed. 2)Google Scholar
  93. 93.
    Barria C, Malecki M, Arraiano CM (2013) Bacterial adaptation to cold. Microbiology 159:2437–2443. CrossRefPubMedGoogle Scholar
  94. 94.
    Horn G, Hofweber R, Kremer W, Kalbitzer HR (2007) Structure and function of bacterial cold shock proteins. Cell Mol Life Sci 64(12):1457PubMedCrossRefGoogle Scholar
  95. 95.
    Lee K, Kang H (2016) Emerging roles of RNA-binding proteins in plant growth, development, and stress responses. Mol Cells 39(3):179PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D'Ordine R, Navarro S, Back S, Fernandes M, Targolli J, Dasgupta S, Bonin C, Luethy MH, Heard JE (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147(2):446–455. CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Nemali KS, Bonin C, Dohleman FG, Stephens M, Reeves WR, Nelson DE, Castiglioni P, Whitsel JE, Sammons B, Silady RA (2015) Physiological responses related to increased grain yield under drought in the first biotechnology-derived drought-tolerant maize. Plant Cell Environ 38(9):1866–1880PubMedCrossRefGoogle Scholar
  98. 98.
    Petition for the determination of non-regulated status for MON 87460 (2009). Monsanto Company.
  99. 99.
    Whitsel J, Stork LG, Reeves W, Horak M (2014) Characterization of drought-tolerant maize MON 87460 for use in environmental risk assessment. Crop Sci 54(2):719–729CrossRefGoogle Scholar
  100. 100.
    Lawlor DW (2012) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64(1):83–108PubMedCrossRefGoogle Scholar
  101. 101.
    James C (2015) 20th anniversary (1996 to 2015) of the global commercialization of biotech crops and biotech crop highlights in 2015. ISAAA brief 51Google Scholar
  102. 102.
    McAllister CH, Beatty PH, Good AG (2012) Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol J 10(9):1011–1025PubMedCrossRefGoogle Scholar
  103. 103.
    Rothstein SJ, Bi Y-M, Coneva V, Han M, Good A (2014) The challenges of commercializing second-generation transgenic crop traits necessitate the development of international public sector research infrastructure. J Exp Bot 65(19):5673–5682PubMedCrossRefGoogle Scholar
  104. 104.
    Miyashita Y, Dolferus R, Ismond KP, Good AG (2007) Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. Plant J 49(6):1108–1121PubMedCrossRefGoogle Scholar
  105. 105.
    Snyman S, Hajari E, Watt M, Lu Y, Kridl J (2015) Improved nitrogen use efficiency in transgenic sugarcane: phenotypic assessment in a pot trial under low nitrogen conditions. Plant Cell Rep 34(5):667–669PubMedCrossRefGoogle Scholar
  106. 106.
    Hajari E, Watt M, Snyman S (2013) Towards improved nitrogen use efficiency in sugarcane by overexpression of alanine aminotransferase. S Afr J Bot 86:174CrossRefGoogle Scholar
  107. 107.
    Hu Y, Xie Q, Chua N-H (2003) The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 15(9):1951–1961PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kuluev B, Knyazev A, Iljassowa A, Chemeris A (2011) Constitutive expression of the ARGOS gene driven by dahlia mosaic virus promoter in tobacco plants. Russ J Plant Physiol 58(3):507–515CrossRefGoogle Scholar
  109. 109.
    Kuluev B, Knyazev A, Mikhaylova E, Ermoshin A, Nikonorov Y, Chemeris A (2016) The poplar ARGOS-LIKE gene promotes leaf initiation and cell expansion, and controls organ size. Biol Plant 60(3):513–522CrossRefGoogle Scholar
  110. 110.
    Zhao Y, Tian X, Li Y, Zhang L, Guan P, Kou X, Wang X, Xin M, Hu Z, Yao Y (2017) Molecular and functional characterization of wheat ARGOS genes influencing plant growth and stress tolerance. Front Plant Sci 8:170PubMedPubMedCentralGoogle Scholar
  111. 111.
    Wang B, Sang YL, Song H, Gao XQ, Zhang XS (2009) Expression of a rice OsARGOS gene in Arabidopsis promotes cell division and expansion and increases organ size. J Genet Genomics 36(1):31–40PubMedCrossRefGoogle Scholar
  112. 112.
    Guo M, Rupe MA, Wei J, Winkler C, Goncalves-Butruille M, Weers BP, Cerwick SF, Dieter JA, Duncan KE, Howard RJ (2013) Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield. J Exp Bot 65(1):249–260PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Rai MI, Wang X, Thibault DM, Kim HJ, Bombyk MM, Binder BM, Shakeel SN, Schaller GE (2015) The ARGOS gene family functions in a negative feedback loop to desensitize plants to ethylene. BMC Plant Biol 15(1):157PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    McAllister CH, Good AG (2015) Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana. PLoS One 10(4):e0121830PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Corteva Agriscience™Agriculture Division of DowDuPont™IndianapolisUSA

Personalised recommendations