Overview of Biotechnology-Derived Herbicide Tolerance and Insect Resistance Traits in Plant Agriculture

  • Tejinder Mall
  • Manju Gupta
  • Tarlochan Singh Dhadialla
  • Sarria RodrigoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1864)


Biotechnology has been central for the acceleration of crop improvement over the last two decades. Since 1994, when the first commercial biotechnology-derived tomato crop was commercialized, the cultivated area for genetically modified crops has reached 185.1 million hactares worldwide. Both the number of crops and the number of traits developed using biotechnology have accounted for this increase. Among the most impactful biotechnology-derived traits are insect resistance and herbicide tolerance, which have greatly contributed to the worldwide increase in agricultural productivity and stabilization of food security. In this chapter, we provide an overview of the history of the biotechnology-derived input traits, the existing genetically engineered commercial crop products carrying insect resistance and herbicide tolerance traits, as well as a perspective on how new technologies could further impact the development of new traits in crops. With the projection of the world population to increase to 9.8 billion by the year 2050 and reduction in available farmland, one of the biggest challenges will be to provide sustainable nourishment to the projected population. Biotechnology will continue to be the key enabler for development of insect resistance and herbicide tolerance traits to overcome that imminent challenge.

Key words

Biotechnology Insect resistance Herbicide tolerance Molecular characterization 



We are grateful to Lauren Clark for providing information on analytical technologies for transgene analysis and to Laura Tagliani, Phil Poirier, Robert Lampe, Stephen Novak, and Terry Wright for critical review of the manuscript.


  1. 1.
    James C (2016) Global status of commercialized biotech / GM crops: 2015. ISAAA Brief No. 51. ISAAA, Ithaca, NYGoogle Scholar
  2. 2.
    McDougall P (2017) Seed industry overview. Phillips McDougall, Midlothian, UKGoogle Scholar
  3. 3.
    Mall TK, Han L, Tagliani L, Christensen C (2018) Transgenic crops: status, potential and challenges. In the book - Biotechnologies of Crop Improvement, Volume 2, Springer, Chapter 16Google Scholar
  4. 4.
    United Nations Department of Economic and Social Affairs Population Division. Accessed 30 Oct 2017
  5. 5.
    Li L, Zhang Q, Huang D (2014) A Review of Imaging Techniques for Plant Phenotyping. Sensors 14:20078–20111. CrossRefPubMedGoogle Scholar
  6. 6.
    Nielsen RL (2017) Historical corn grain yields for the US. Purdue communication.
  7. 7.
    Schwember AR (2008) An update on genetically modified crops. Cien Inv Agr 35:231–250Google Scholar
  8. 8.
    Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P et al (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9:293–300Google Scholar
  9. 9.
    Stevens J, Dunse K, Fox J, Evans S, Anderson M (2012) Biotechnological approaches for the control of insect pests in crop plants. INTECH. Google Scholar
  10. 10.
    Hilscher J, Burstmayr H, Stoger E (2017) Targetted modification of plant genomes from precision crop breeding. Biotechnol J 12:1600173–1600187Google Scholar
  11. 11.
    Sovova T, Kerins G, Demnerova K, Ovesna J et al (2017) Genome editing with engineered nucleases in economically important animals and plants: State of the art in the research pipeline. Curr Issues Mol Biol 21:41–62PubMedGoogle Scholar
  12. 12.
    Yau Y-Y, Stewart CN Jr (2013) Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnol 13:36PubMedPubMedCentralGoogle Scholar
  13. 13.
    Bauer EK, Singh DK, Popescu SC (2014) Next-generation plant science: putting big data to work. Genome Biol 15:301Google Scholar
  14. 14.
    Nocker SV, Gardiner SE (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural crops. Hortic Res 1:14022. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Varshney RK, Singh VK, Hickey JM, Xun X, Marshall DF, Wang J, Edwards D, Ribaut J-M (2016) Analytical and decision support tools for genomics-assisted breeding. Trends Plant Sci 21:354–366. CrossRefPubMedGoogle Scholar
  16. 16.
    Bates SL, Zhao JZ, Roush RT, Shelton AM et al (2005) Insect resistance management in GM crops: past, present and future. Nat Biotechnol 23:57–62PubMedGoogle Scholar
  17. 17.
    Murai N, Kemp JD, Sutton DW, Murray MG, Slightom JL, Merlo DJ, Reichert NA, Sengupta-Gopalan C, Stock CA, Barker RF, Hall TC (1983) Phaseolin gene from bean is expressed after transfer to sunflower via tumor-inducing plasmid vectors. Science 222(4623):476–482Google Scholar
  18. 18.
    Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci 80(15):4803–4807PubMedGoogle Scholar
  19. 19.
    Herrera-Estrella L, Depicker A, Van Montagu M, Schell J (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–213. CrossRefGoogle Scholar
  20. 20.
    ISAAA Briefs (2016) Global status of commercialized biotech/GM crops 2016.
  21. 21.
    Gianessi LP (2005) Economic and herbicide use impacts of glyphosate-resistant crops. Pest Manag Sci 61:241–245PubMedGoogle Scholar
  22. 22.
    Fuchs RL, Mackey MA (2003) Genetically modified foods. In: Encyclopedia of food sciences and nutrition, 2nd edn. Academic Press, Cambridge, pp 2876–2882Google Scholar
  23. 23.
    Mattes O (1927) Parasitare krankheiten der mehlmottenlarven und versuche uber ihre vermendbarkeit als biologisches bekiampfungusmittel. Sitzber Ges Beforder Ges Naturw Marburg 62:381–417Google Scholar
  24. 24.
    Kronstad JW, Schnepf HE, Whiteley HR (1983) Diversity of locations for Bacillus thuringiensis crystal protein genes. J Bacteriol 154:419–428PubMedPubMedCentralGoogle Scholar
  25. 25.
    Carlton BC, Gonzales JN (1985) Plasmids and delta-endotoxin production in different subspecies of Bacillus thuringensis. In: Hoch JA, Setlow P (eds) Molecular biology of microbial differentiation. American Society for Microbiology, Washington DCGoogle Scholar
  26. 26.
    Carlton BC, Gawron-Burke G (1993) Genetic improvement of Bacillus thuringiensis for bioinsecticide development. In: Kim L (ed) Advanced engineered pesticides. Marcel Dekker, Inc, New YorkGoogle Scholar
  27. 27.
    Kaur S (2000) Molecular approaches towards development of novel Bacillus thuringiensis biopesticides. World J Microbiol Biotechnol 16:781–793Google Scholar
  28. 28.
    Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischoff DA (1991) Modificatioon of the coding sequence enhances plant expression of insect control genes. Proc Natl Acad Sci U S A 88:3324–3328PubMedPubMedCentralGoogle Scholar
  29. 29.
    Koziel MG, Beland GL, Bowman C, Carozzi NB et al (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Nat Biotechnol 11:194–200Google Scholar
  30. 30.
    Hoffmann MP, Zalom FG, Wilson LT et al (1992) Field evaluation of transgenic tobacco containing genes encoding Bacillus thuringiensis delta-endotoxin or cowpea trypsin inhibitor: efficacy against Helicoverpa zea (Lepidoptera: Noctuidae). J Econ Entomol 85:2516–2522Google Scholar
  31. 31.
    Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147(3):969–977PubMedPubMedCentralGoogle Scholar
  32. 32.
    Gupta M, Ram R (2004) Development of genetically modified agronomic crops. In: Parekh SR (ed) The GMO handbook. Humana Press, New JerseyGoogle Scholar
  33. 33.
    Guttikonda SK, Marri P, Mammadov J, Ye L, Soe K, Richey K, Cruse J, Zhuang M, Gao Z, Evans C, Rounsley S, Kumpatla SP (2016) Molecular characterization of transgenic events using next generation sequencing approach. PLoS One 11(2):e0149515. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Codex A (2003) Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants. CAC/GL 45:1–18Google Scholar
  35. 35.
    Privalle LS, Chen J, Clapper G, Hunst P, Spiegelhalter F, Zhong CX (2012) Development of an agricultural biotechnology crop product: testing from discovery to commercialization. J Agric Food Chem 60:10179–10187. CrossRefPubMedGoogle Scholar
  36. 36.
    Liebler DC, Zimmerman LJ (2013) Targeted quantitation of proteins by mass spectrometry. Biochemistry 52:3797–3806. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Crickmore N, Zeigler DR, Feitelson J et al (1998) Revision of the nomenclature from the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813PubMedPubMedCentralGoogle Scholar
  38. 38.
    Narva KE, Storer NP, Meade T (2014) Disciovery and development of insect-resistant crops using genes from Bacillus thuringiensis. In: Dhadialla TS, Gill SS (eds) Advances in insect physiology: Insect midgut and insecticidal proteins, vol 47. Elsevier, San FranciscoGoogle Scholar
  39. 39.
    James C (2015) 20th anniversary (1996 to 2015) of the global commercialization of biotech crops and biotech crop highlights in 2015. ISAAA Brief No. 51. ISAAA, Ithaca, NYGoogle Scholar
  40. 40.
    Bohn T, Lovei GL (2017) Complex outcomes from insect and weed control with transgenic plants: ecological surprises. Front Environ Sci 5(60):1–8. CrossRefGoogle Scholar
  41. 41.
    French-Constant RH, Dowling AJ (2014) Photorhabdus toxins. In: Dhadialla TS, Gill SS (eds) Advances in insect physiology: insect midgut and insecticidal proteins, vol 47. Elsevier, San FranciscoGoogle Scholar
  42. 42.
    Sheets JJ, Hey TD, Fencil KJ et al (2011) Insecticidal toxin complex proteins from Xenorhabdus nematophilus: structure and pore formation. J Biol Chem 286:22742–22749PubMedPubMedCentralGoogle Scholar
  43. 43.
    Swati M, Mishra PK, Lokya V, Swaroop V, Mallikarjuna N, Gupta AD, Padmasree K (2016) Purufication and partial characterization of trypsin specific proteinase inhibitors from pigeonpea wild relative cajanus platycarpus L. (Fabaceae) active against gut proteases of lepidopteran pest Helicoverpa armigera. Front Physiol 7:1–13Google Scholar
  44. 44.
    Tanpure RS, Barbole RS, Dawkar VV, Waichal YA, Joshi RS, Giri AP, Gupta VS (2017) Inproved tolerance against Helicoverpa armigera in transgenic tomato over-expressing multi domain proteinase inhibitor gene from capsicum annuum. Physiol Mol Biol Plants 23(3):597–604PubMedPubMedCentralGoogle Scholar
  45. 45.
    Rao DE, Divya K, Prathyusha IVSN, Krishna CR, Chaitnya KV (2017) Insect resistant plants. In: Dubey SK, Pandey A, Sangwan RS (eds) Current developments in biotechnology and bioengineering. Elsevier, AmsterdamGoogle Scholar
  46. 46.
    Ravindran BM (2016) Transgenic pest resistance. Devagiri J Sci 2(1):01–31Google Scholar
  47. 47.
    Stevens J, Dunse K, Fox J, Evans S, Anderson M (2012) Biotechnological approaches for the control of insects pests in crop plants. In: Soundararajan RP (ed) Pesticides - advances in chemical and botanical pesticides. InTech, Rijeka, Croatia, pp 269–308Google Scholar
  48. 48.
    Morton RL, Schroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Higgins TJV (2000) Bean alpha-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci USA 97:3820–3825PubMedGoogle Scholar
  49. 49.
    Haq SK, Atif SM, Khan RH (2004) Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Arch Biochem Biophys 431:145–159PubMedGoogle Scholar
  50. 50.
    Shukle RH, Murdock LL (1983) Lipoxygenase, trypsin inhibitor and lectin from soybeans effects on larval growth of Manduca sexta (Lepidoptera: Sphingidae). Environ Entomol 12:787–1128Google Scholar
  51. 51.
    Czapla TH, Lang BA (1990) Effects of plant lectins on the larval development of European corn borer (Lepidoptera: Pyralidae) and southern corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 83:2480–2485Google Scholar
  52. 52.
    Fitches E, Gatehouse JA (1998) A comparison of the short and long term effects of insecticidal lectins on the activities of soluble and brush border enzymes of tomato moth larvae (Lacanobia oleracia). J Insect Physiol 44:1213–1224PubMedGoogle Scholar
  53. 53.
    Ding XF, Gopalakrishnan B, Johnson LB, White FF, Wang XR, Morgan TD, Kramer KJ, Muthukrishnan S (1988) Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgenic Res 7:77–84Google Scholar
  54. 54.
    Ussuf KK, Laxmi NH, Mitra R (2001) Proteinase inhibitors: Plant –derived genes of insecticidal protein for developing insect-resistant transgenic plants. Curr Sci 80(7):847–852Google Scholar
  55. 55.
    Chiche L, Heitz A, Padilla A, Lenguyen D, Castro B (1993) Solution conformation of a synthetic Bis-headed inhibitor of trypsin and carboxypeptidase A: New structural alignment between the squash inhibitors and the potato carboxypeptidase inhibitor. Protein Eng 6:675–682PubMedGoogle Scholar
  56. 56.
    Urwin PE, McPherson MJ, Atkinson HJ (1998) Enhanced transgenic plant resistance t nematodes by dual proteinase inhibitor constructs. Plants 204:472–479Google Scholar
  57. 57.
    Herzig V, Bende NJ, Alam MS et al (2014) Methods for deployment of spider venom peptides as bioinsecticides. In: Dhadialla TS, Gill SS (eds) Advances in insect physiology: insect midgut and insecticidal proteins, vol 47. Elsevier, San FranciscoGoogle Scholar
  58. 58.
    Jiang H, Zhu YX, Che ZL (1996) Insect resistance of transformed tobacco plants with the gene of the spider insecticidal peptide. J Integr Plant Biol Acta Bot Sin 38:95–99Google Scholar
  59. 59.
    Khan SA, Zafar Y, Briddon RW et al (2006) Spider venom toxin ptotects plants from insect attack. Transgenic Res 15:349–357PubMedGoogle Scholar
  60. 60.
    Omar A, Chatha KA (2012) National Institute for Biotechnology and Genetic Engineering (NIBGE): genetically modified spider cotton. Asian J Manag Cases 9:33–58Google Scholar
  61. 61.
    Hannon GJ (2002) RNA interference. Nature 418:244–251PubMedGoogle Scholar
  62. 62.
    Lee JT (2012) Epigenetic regulation by long noncoding RNAs. Science 338:1435–1439PubMedGoogle Scholar
  63. 63.
    Djebali S, Davis CA, Merkel A, Dobin A, Lassman T et al (2012) Landscape of transcription in human cells. Nature 489:101–108. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395:854PubMedGoogle Scholar
  65. 65.
    Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNA can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263:103–112PubMedGoogle Scholar
  66. 66.
    Fu KY, Li Q, Zhou LT, Meng QW, Lu FG, Guo WC, Li GQ (2016) Knockdown of juvenile hormone acid methyl transferase severely affects the performance of Leptinotarsa decemlineata (Say) larvae and adults. Pest Manag Sci 72:1231–1241PubMedGoogle Scholar
  67. 67.
    Baum JA, Bogaert T, Clinton W, Heck GR, Feldman P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326PubMedGoogle Scholar
  68. 68.
    Manakuchi C, Namiki T, Yoshiyama M, Shinoda T (2008) RNAi-mediated knockdown of juvenile hormone acid O-methyltransferase gene causes precocious metamorphosis in the red flour beetle Tribolium castaneum. FEBS J 275:2919–2931Google Scholar
  69. 69.
    Tian G, Cheng L, Qi X et al (2015) Transgenic cotton plants expressing double-stranded RNAs target HMG-CoaA reductase (HMGR) gene inhibits the growth development and survival of cotton bollworms. Int J Biol Sci 11:1296–1305PubMedPubMedCentralGoogle Scholar
  70. 70.
    Baum JA, Roberts JK (2014) Progress towards RNAi-mediated insect pest management. In: Dhadialla TS, Gill SS (eds) Advances in insect physiology: insect midgut and insecticidal proteins, vol 47. Elsevier, San FranciscoGoogle Scholar
  71. 71.
    Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impaires larval tolerance of gossypol. Nat Biotechnol 25:1307–1313PubMedGoogle Scholar
  72. 72.
    Bolognesi R, Ramaseshadri P, Anderson J, Bachman P, Clinton W, Flannagan R, Ilgan O, Lawrence C, Levine S, Moar W, Mueller G (2012) Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm Diabrotica virgifera virgifera LeConte. PLoS One 7(10):e47534PubMedPubMedCentralGoogle Scholar
  73. 73.
    Zhao YY, Yang G, Wang-Pruski G, You MS (2008) Phyllotreta striolata (Coleoptera: Chrysomelidae): Arginine kinase cloning and RNAi-based pest control. Eur J Entomol 105:815–822Google Scholar
  74. 74.
    Whyard S, Singh AD, Wong S (2009) Double-stranded RNAs can act as species-specific insecticide. Insect Biochem Mol Bio 39(11):824–832Google Scholar
  75. 75.
    Zhu JQ, Liu S, Ma Y, Zhang JQ, Qi HS, Wei ZJ, Yao Q, Zhang WQ, Li S (2012) Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene EcR. PLoS One 7(6):e38572PubMedPubMedCentralGoogle Scholar
  76. 76.
    Belles X (2010) Beyond Drosophila, RNAi in vivo and functional genomics in insects. Annu Rev Entomol 55:111–128PubMedGoogle Scholar
  77. 77.
    Burand JP, Hunter WB (2013) RNAi, future in insect management. J Invertebr Pathol 112(Suppl. 1):S68–S74PubMedGoogle Scholar
  78. 78.
    Gu L, Knipple DC (2013) Recent advances in RNA interference research in insects: Implications for future insect pest management strategies. Crop Prot 45:36–40Google Scholar
  79. 79.
    Huvenne H, Smagghe G (2010) Mechanism of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56(3):227–235PubMedGoogle Scholar
  80. 80.
    Zhang X, Zhang J, Zhu K (2012) Advances and prospects of RNAi technologies in insect pest management. In: Liu T, Kang L (eds) Recent advances in entomological research. Springer, Berlin HeidelbergGoogle Scholar
  81. 81.
    Zhang M, Zhou Y, Wang H et al (2013) Identifying potential RNAi targets in grain aphid Sitobian avenae F. based on transcriptome profiling of its alimenrtry canal after feeding on wheat plants. BMC Genomics 14:560PubMedPubMedCentralGoogle Scholar
  82. 82.
    Green JM (2014) Current state of herbicides in herbicide resistant crops. Pest Manag Sci 70:1351–1357PubMedGoogle Scholar
  83. 83.
    Duke SO, Powles SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64(4):319–325PubMedGoogle Scholar
  84. 84.
    Baylis AD (2000) Why glyphosate is a global herbicide: Strengths, weaknesses and prospects. Pest Manag Sci 56:299–308Google Scholar
  85. 85.
    Dill GM (2005) Glyphosate resistant crops: history, status and future. Pest Manag Sci 61:219–224PubMedGoogle Scholar
  86. 86.
    Shah DM, Horsch RB, Klee HJ, Kishore GM, Winter JA, Tumer NE, Hironaka CM, Sanders PR, Gasser CS, Aykent S, Siegel NR, Rogers SG, Fraley RT (1986) Engineering herbicide tolerance in transgenic plants. Science 133(4762):478–481Google Scholar
  87. 87.
    Pline-Srnic W (2006) Physiological mechanisms of glyphosate resistance. Weed Technol 20(2):290–300Google Scholar
  88. 88.
    Funke T, Han H, Healy-Fried M, Fischer M, Schonbrunn E (2006) Molecular basis for the herbicide resistance of roundup ready crops. PNAS 103(35):13010–13015PubMedGoogle Scholar
  89. 89.
    Eschenburg S, Healy ML, Priestman MA, Lushington GH, Schonbrunn E (2002) How the mutation glycine96 to alanine confers glyphosate insensitivity to 5-enolpyruvyl shikinate-3-phosphate synthase from Escherichia coli. Planta 216:129–135PubMedGoogle Scholar
  90. 90.
    Green JM (2011) Herbicide resistant crops: utilities and limitations for herbicide resistant weed management. J Agric Food Chem 59:5819–5829PubMedGoogle Scholar
  91. 91.
    Shakula S, Braverman MP, Linscombe SD (1997) Response of BAR transformed rice (Oryza sativa) and red rice (Oryza sativa) to glufosinate application timing. Weed Technol 11:303–307Google Scholar
  92. 92.
    Duke SO (1997) Weed management: implications of herbicide resistant crops. Workshop on ecological effect of pest resistance genes in management of ecosystems p. 8. January 31 to February 3, 1999, Bethesda, MD, USAGoogle Scholar
  93. 93.
    Duke SO (2017) The history and current status of glyphosate. Pest Manag Sci 74(5):1027–1034. CrossRefPubMedGoogle Scholar
  94. 94.
    ISAAA (International Service for the Acquisition of Agri-Biotech Applications) (2016) Pocket K No. 10: Herbicide tolerance technology: glyphosate and glufosinate. Last updated August 2016
  95. 95.
    Yu Q, Powles SB (2014) Resistance to AHAS inhibitor herbicide: current understanding. Pest Manag Sci 70(9):1340–1350PubMedGoogle Scholar
  96. 96.
    Green JM (2007) Review of glyphosate and ALS inhibiting herbicide crop resistance and resistant weed management. Weed Technol 21:547–558Google Scholar
  97. 97.
    Tan S, Evans RR, Dahmer ML, Singh BK, Shaner DL (2005) Imidazolinone tolerant crops: history, current status and future. Pest Manag Sci 61:246–257PubMedGoogle Scholar
  98. 98.
  99. 99.
    Chahal PS, Aulakh JS, Jugulam M, Jhala AJ (2015) Herbicide resistant palmer amaranth (Amaranthus palmeri S. Wats.) in the United States - Mechanisms of resistance, impact and management. INTECH Chapter 1:1–30Google Scholar
  100. 100.
    Craigmyle BD, Ellis JM, Bradley KW (2013) influence of herbicide programs on weed management in soybean with resistance to glufosinate and 2,4-D. Weed Technol 27:78–84Google Scholar
  101. 101.
    Wright TR, Shan G, Walsh TA, Lira JM, Cui C, Song P, Zhuang M, Arnold N, Lin G, Yau K, Russell SM, Cicchillo RM, Peterson MA, Simpson DM, Zhou N, Ponsamuel J, Zhang Z (2010) Robust crop resistance to broadleaf and grass herbicide provided by aryloxyalkanoate dioxygenase transgenes. PNAS 107(47):20240–20245PubMedGoogle Scholar
  102. 102.
    Ricroch AE, Henard-Damave MC (2016) Next biotech plants: new traits, crops, developers and technologies for addressing global challenges. Crit Rev Biotechnol 36(4):675–690. CrossRefPubMedGoogle Scholar
  103. 103.
    Poree F, Heinrichs V, Lange G, Laber B, Peters C and Schouten L (2014) HPPD variants and methods of use. United States patent application # US20150267180A1Google Scholar
  104. 104.
    Jain R, Miller B R, Vail G D and Ulmer B J (2016) Improved weed control methods. United states patent # US20160058014 A1Google Scholar
  105. 105.
    Owen MDK (2013) 2013 herbicide guide for iowa corn and soybean production. Agriculture and Environment Extension PublicationsGoogle Scholar
  106. 106.
    Gullickson G (2017) Balance GT soybean performance system full scale launch likely for 2018 growing season. Successful farming at
  107. 107.
    Li X, Nicholl D (2005) Development of PPO inhibitor resistant cultures and crops. Pest Manag Sci 61(3):277–285PubMedGoogle Scholar
  108. 108.
    Choi KW, Han O, Lee HJ, Yun YC, Moon YH, Kim MK, Kuk YI, Han SU, Guh JO (1998) Generation of resistance to the diphenyl ether herbicide, oxyfluorfen, via expression of the Bacillus subtilis protoporphyrinogen oxidase gene in transgenic tobacco plants. Biosci Biotechnol Biochem 62:558–560PubMedGoogle Scholar
  109. 109.
    Lee HJ, Lee SB, Chung JS, Han SU, Han O, Guh JO, Jeon JS, An G, Back K (2000) Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen. Plant Cell Physiol 41:743–749PubMedGoogle Scholar
  110. 110.
    Green JM (2018) The rise and future of glyphosate and glyphosate resistant crops. Pest Manag Sci 74(5):1035–1039. CrossRefPubMedGoogle Scholar
  111. 111.
    Hinga M, Griffin S, Moon M S, Rasmussen R D and Cuevas F (2017) Methods and composition to produce rice resistant to ACCase inhibitors. United states patent # US20170002375 A1Google Scholar
  112. 112.
    Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451. CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Gupta M, DeKelver RC, Palta A et al (2012) Transcriptional activation of Brassica napus b-ketoacyl-ACP synthase II with an engineered zinc finger protein transcription factor. Plant Biotechnol J 10(7):783–791. CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Ainley WM, Sastry-Dent L, Welter ME et al (2013) Trait stacking via targeted genome editing. Plant Biotechnol J 11:1126–1134. CrossRefGoogle Scholar
  115. 115.
    Kumar S, AlAbed D, Worden A et al (2015) A modular gene targeting system for sequential transgene stacking in plants. J Biotechnol 207:12–20. CrossRefGoogle Scholar
  116. 116.
    Feldman KS (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J 1:71–83Google Scholar
  117. 117.
    Martienssen RA (1998) Functional genomics: Probing plant gene function and expression with transposons. Proc Natl Acad Sci U S A 95:2021–2026PubMedPubMedCentralGoogle Scholar
  118. 118.
    CM MC, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442. CrossRefGoogle Scholar
  119. 119.
    McCallum CM, Comai L, Greene EA, Henikoff S (2000b) Nat Biotechnol 18:455–457PubMedGoogle Scholar
  120. 120.
    Koornneef N, Dellaert LWM, van der Veen JH (1982) EMS- and radiaton-induced mutagenesis at individual loci in Arabidopsis thaliana (L.) Heynh. Mutat Res 93:109–123PubMedGoogle Scholar
  121. 121.
    IAEA (2010) Welcome to the mutant variety database.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tejinder Mall
    • 1
  • Manju Gupta
    • 1
  • Tarlochan Singh Dhadialla
    • 1
  • Sarria Rodrigo
    • 1
    Email author
  1. 1.Corteva Agriscience™Agriculture Division of DowDuPont™IndianapolisUSA

Personalised recommendations