Advertisement

DNA Break Repair in Plants and Its Application for Genome Engineering

  • Carla Schmidt
  • Michael Pacher
  • Holger Puchta
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1864)

Abstract

Genome engineering is a biotechnological approach to precisely modify the genetic code of a given organism in order to change the context of an existing sequence or to create new genetic resources, e.g., for obtaining improved traits or performance. Efficient targeted genome alterations are mainly based on the induction of DNA double-strand breaks (DSBs) or adjacent single-strand breaks (SSBs). Naturally, all organisms continuously have to deal with DNA-damaging factors challenging the genetic integrity, and therefore a wide range of DNA repair mechanisms have evolved. A profound understanding of the different repair pathways is a prerequisite to control and enhance targeted gene modifications. DSB repair can take place by nonhomologous end joining (NHEJ) or homology-dependent repair (HDR). As the main outcome of NHEJ-mediated repair is accompanied by small insertions and deletions, it is applicable to specifically knock out genes or to rearrange linkage groups or whole chromosomes. The basic requirement for HDR is the presence of a homologous template; thus this process can be exploited for targeted integration of ectopic sequences into the plant genome. The development of different types of artificial site-specific nucleases allows for targeted DSB induction in the plant genome. Such synthetic nucleases have been used for both qualitatively studying DSB repair in vivo with respect to mechanistic differences and quantitatively in order to determine the role of key factors for NHEJ and HR, respectively. The conclusions drawn from these studies allow for a better understanding of genome evolution and help identifying synergistic or antagonistic genetic interactions while supporting biotechnological applications for transiently modifying the plant DNA repair machinery in favor of targeted genome engineering.

Key words

DSB repair HDR NHEJ Programmable nucleases Gene targeting Genome engineering 

References

  1. 1.
    Watanabe K, Yamada N, Takeuchi Y (2006) Oxidative DNA damage in cucumber cotyledons irradiated with ultraviolet light. J Plant Res 119(3):239–246.  https://doi.org/10.1007/s10265-006-0266-2 CrossRefPubMedGoogle Scholar
  2. 2.
    Sharma P, Jha AB, Dubey RS et al (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012(1):1–26.  https://doi.org/10.1155/2012/217037 CrossRefGoogle Scholar
  3. 3.
    Sikora P, Chawade A, Larsson M et al (2011) Mutagenesis as a tool in plant genetics, functional genomics, and breeding. Int J Plant Genomics 2011:314829.  https://doi.org/10.1155/2011/314829 CrossRefPubMedGoogle Scholar
  4. 4.
    Chen L, Hao L, Parry MAJ et al (2014) Progress in TILLING as a tool for functional genomics and improvement of crops. J Integr Plant Biol 56(5):425–443.  https://doi.org/10.1111/jipb.12192 CrossRefPubMedGoogle Scholar
  5. 5.
    Till BJ, Reynolds SH, Greene EA et al (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13(3):524–530.  https://doi.org/10.1101/gr.977903 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Stingele J, Jentsch S (2015) DNA-protein crosslink repair. Nat Rev Mol Cell Biol 16(8):455–460.  https://doi.org/10.1038/nrm4015 CrossRefPubMedGoogle Scholar
  7. 7.
    Schärer OD (2003) Chemistry and biology of DNA repair. Angew Chem Int Ed Engl 42(26):2946–2974.  https://doi.org/10.1002/anie.200200523 CrossRefPubMedGoogle Scholar
  8. 8.
    Stadler LJ (1928) Genetic effects of X-rays in maize. Proc Natl Acad Sci U S A 14(1):69–75CrossRefGoogle Scholar
  9. 9.
    Muller HJ (1927) Artificial transmutation of the gene. Science 66(1699):84–87.  https://doi.org/10.1126/science.66.1699.84 CrossRefPubMedGoogle Scholar
  10. 10.
    Nakagawa H (2009) Induced mutations in plant breeding and biological researches in Japan. Rome: 51Google Scholar
  11. 11.
    West CE, Waterworth WM, Story GW et al (2002) Disruption of the Arabidopsis AtKu80 gene demonstrates an essential role for AtKu80 protein in efficient repair of DNA double-strand breaks in vivo. Plant J 31(4):517–528CrossRefGoogle Scholar
  12. 12.
    Manova V, Gecheff K, Stoilov L (2006) Efficient repair of bleomycin-induced double-strand breaks in barley ribosomal genes. Mutat Res 601(1–2):179–190.  https://doi.org/10.1016/j.mrfmmm.2006.07.004 CrossRefPubMedGoogle Scholar
  13. 13.
    Mannuss A, Trapp O, Puchta H (2012) Gene regulation in response to DNA damage. Biochim Biophys Acta 1819(2):154–165.  https://doi.org/10.1016/j.bbagrm.2011.08.003 CrossRefPubMedGoogle Scholar
  14. 14.
    Alonso JM, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301(5633):653–657.  https://doi.org/10.1126/science.1086391 CrossRefPubMedGoogle Scholar
  15. 15.
    Schiml S, Puchta H (2016) Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. Plant Methods 12:8.  https://doi.org/10.1186/s13007-016-0103-0 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jacquier A, Dujon B (1985) An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41(2):383–394CrossRefGoogle Scholar
  17. 17.
    Perrin A, Buckle M, Dujon B (1993) Asymmetrical recognition and activity of the I-SceI endonuclease on its site and on intron-exon junctions. EMBO J 12(7):2939–2947CrossRefGoogle Scholar
  18. 18.
    Monteilhet C, Perrin A, Thierry A et al (1990) Purification and characterization of the in vitro activity of I-Sce I, a novel and highly specific endonuclease encoded by a group I intron. Nucleic Acids Res 18(6):1407–1413CrossRefGoogle Scholar
  19. 19.
    Moure CM, Gimble FS, Quiocho FA (2003) The crystal structure of the gene targeting homing endonuclease I-SceI reveals the origins of its target site specificity. J Mol Biol 334(4):685–695CrossRefGoogle Scholar
  20. 20.
    Puchta H, Dujon B, Hohn B (1993) Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res 21(22):5034–5040CrossRefGoogle Scholar
  21. 21.
    Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160CrossRefGoogle Scholar
  22. 22.
    Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350.  https://doi.org/10.1146/annurev-arplant-042811-105552 CrossRefPubMedGoogle Scholar
  23. 23.
    Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331–338.  https://doi.org/10.1038/nature10886 CrossRefPubMedGoogle Scholar
  24. 24.
    Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821.  https://doi.org/10.1126/science.1225829 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pacher M, Puchta H (2017) From classical mutagenesis to nuclease-based breeding - directing natural DNA repair for a natural end-product. Plant J 90(4):819–833.  https://doi.org/10.1111/tpj.13469 CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang K, Raboanatahiry N, Zhu B et al (2017) Progress in genome editing technology and its application in plants. Front Plant Sci 8:177.  https://doi.org/10.3389/fpls.2017.00177 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Puchta H (2017) Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr Opin Plant Biol 36:1–8.  https://doi.org/10.1016/j.pbi.2016.11.011 CrossRefPubMedGoogle Scholar
  28. 28.
    Gorbunova V, Levy AA (1999) How plants make ends meet: DNA double-strand break repair. Trends Plant Sci 4(7):263–269CrossRefGoogle Scholar
  29. 29.
    Puchta H (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56(409):1–14.  https://doi.org/10.1093/jxb/eri025 CrossRefPubMedGoogle Scholar
  30. 30.
    Szostak JW, Orr-Weaver TL, Rothstein RJ et al (1983) The double-strand-break repair model for recombination. Cell 33(1):25–35CrossRefGoogle Scholar
  31. 31.
    Osman K, Higgins JD, Sanchez-Moran E et al (2011) Pathways to meiotic recombination in Arabidopsis thaliana. New Phytol 190(3):523–544.  https://doi.org/10.1111/j.1469-8137.2011.03665.x CrossRefPubMedGoogle Scholar
  32. 32.
    Eschbach V, Kobbe D (2014) Different replication protein A complexes of Arabidopsis thaliana have different DNA-binding properties as a function of heterotrimer composition. Plant Cell Physiol 55(8):1460–1472.  https://doi.org/10.1093/pcp/pcu076 CrossRefPubMedGoogle Scholar
  33. 33.
    van Dyck E, Stasiak AZ, Stasiak A et al (2001) Visualization of recombination intermediates produced by RAD52-mediated single-strand annealing. EMBO Rep 2(10):905–909.  https://doi.org/10.1093/embo-reports/kve201 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Samach A, Melamed-Bessudo C, Avivi-Ragolski N et al (2011) Identification of plant RAD52 homologs and characterization of the Arabidopsis thaliana RAD52-like genes. Plant Cell 23(12):4266–4279.  https://doi.org/10.1105/tpc.111.091744 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Serra H, Da Ines O, Degroote F et al (2013) Roles of XRCC2, RAD51B and RAD51D in RAD51-independent SSA recombination. PLoS Genet 9(11):e1003971.  https://doi.org/10.1371/journal.pgen.1003971 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sugawara N, Ira G, Haber JE (2000) DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol Cell Biol 20(14):5300–5309CrossRefGoogle Scholar
  37. 37.
    Dubest S, Gallego ME, White CI (2002) Role of the AtRad1p endonuclease in homologous recombination in plants. EMBO Rep 3(11):1049–1054.  https://doi.org/10.1093/embo-reports/kvf211 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mannuss A, Dukowic-Schulze S, Suer S et al (2010) RAD5A, RECQ4A, and MUS81 have specific functions in homologous recombination and define different pathways of DNA repair in Arabidopsis thaliana. Plant Cell 22(10):3318–3330.  https://doi.org/10.1105/tpc.110.078568 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Bleuyard J-Y, Gallego ME, Savigny F et al (2005) Differing requirements for the Arabidopsis Rad51 paralogs in meiosis and DNA repair. Plant J 41(4):533–545.  https://doi.org/10.1111/j.1365-313X.2004.02318.x CrossRefPubMedGoogle Scholar
  40. 40.
    Charlot F, Chelysheva L, Kamisugi Y et al (2014) RAD51B plays an essential role during somatic and meiotic recombination in Physcomitrella. Nucleic Acids Res 42(19):11965–11978.  https://doi.org/10.1093/nar/gku890 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Osakabe K, Abe K, Yoshioka T et al (2006) Isolation and characterization of the RAD54 gene from Arabidopsis thaliana. Plant J 48(6):827–842.  https://doi.org/10.1111/j.1365-313X.2006.02927.x CrossRefPubMedGoogle Scholar
  42. 42.
    Roth N, Klimesch J, Dukowic-Schulze S et al (2012) The requirement for recombination factors differs considerably between different pathways of homologous double-strand break repair in somatic plant cells. Plant J 72(5):781–790.  https://doi.org/10.1111/j.1365-313X.2012.05119.x CrossRefPubMedGoogle Scholar
  43. 43.
    Dulieu HL (1975) Somatic variations on a yellow mutant in Nicotianatabacum L. (a1+/a1a2+/a2) II. Reciprocal genetic events occurring in leaf cells. Mutat Res Fundam Mol Mech Mutagen 28(1):69–77.  https://doi.org/10.1016/0027-5107(75)90316-4 CrossRefGoogle Scholar
  44. 44.
    Carlson PS (1974) Mitotic crossing-over in a higher plant. Genet Res 24(1):109–112.  https://doi.org/10.1017/S0016672300015123 CrossRefGoogle Scholar
  45. 45.
    Rinehart TA, Dean C, Weil CF (1997) Comparative analysis of non-random DNA repair following Ac transposon excision in maize and Arabidopsis. Plant J 12(6):1419–1427CrossRefGoogle Scholar
  46. 46.
    Athma P, Peterson T (1991) Ac induces homologous recombination at the maize P locus. Genetics 128(1):163–173PubMedPubMedCentralGoogle Scholar
  47. 47.
    Siebert R, Puchta H (2002) Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. Plant Cell 14(5):1121–1131CrossRefGoogle Scholar
  48. 48.
    Orel N, Kyryk A, Puchta H (2003) Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome. Plant J 35(5):604–612CrossRefGoogle Scholar
  49. 49.
    Vu GTH, Cao HX, Fauser F et al (2017) Endogenous sequence patterns predispose the repair modes of CRISPR/Cas9-induced DNA double strand breaks in Arabidopsis thaliana. Plant J 92(1):57–67.  https://doi.org/10.1111/tpj.13634 CrossRefPubMedGoogle Scholar
  50. 50.
    Puchta H (1998) Repair of genomic double-strand breaks in somatic plant cells by one-sided invasion of homologous sequences. Plant J 13(3):331–339.  https://doi.org/10.1046/j.1365-313X.1998.00035.x CrossRefGoogle Scholar
  51. 51.
    Watanabe K, Pacher M, Dukowic S et al (2009) The structural maintenance of chromosomes 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in Arabidopsis thaliana. Plant Cell 21(9):2688–2699.  https://doi.org/10.1105/tpc.108.060525 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Vu GTH, Cao HX, Watanabe K et al (2014) Repair of site-specific DNA double-strand breaks in barley occurs via diverse pathways primarily involving the sister chromatid. Plant Cell 26(5):2156–2167.  https://doi.org/10.1105/tpc.114.126607 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Chiurazzi M, Ray A, Viret JF et al (1996) Enhancement of somatic intrachromosomal homologous recombination in Arabidopsis by the HO endonuclease. Plant Cell 8(11):2057–2066.  https://doi.org/10.1105/tpc.8.11.2057 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Gisler B, Salomon S, Puchta H (2002) The role of double-strand break-induced allelic homologous recombination in somatic plant cells. Plant J 32(3):277–284CrossRefGoogle Scholar
  55. 55.
    Filler Hayut S, Melamed Bessudo C, Levy AA (2017) Targeted recombination between homologous chromosomes for precise breeding in tomato. Nat Commun 8:15605.  https://doi.org/10.1038/ncomms15605 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Puchta H (1999) DSB-induced recombination between ectopic homologous sequences in somatic plant cells. Genetics 152:1173–1181PubMedPubMedCentralGoogle Scholar
  57. 57.
    Shalev G, Levy AA (1997) The maize transposable element Ac induces recombination between the donor site and an homologous ectopic sequence. Genetics 146(3):1143–1151PubMedPubMedCentralGoogle Scholar
  58. 58.
    Vu GTH, Cao HX, Reiss B et al (2017) Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage. New Phytol 214(4):1712–1721.  https://doi.org/10.1111/nph.14490 CrossRefPubMedGoogle Scholar
  59. 59.
    Kirik A, Salomon S, Puchta H (2000) Species-specific double-strand break repair and genome evolution in plants. EMBO J 19(20):5562–5566.  https://doi.org/10.1093/emboj/19.20.5562 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Orel N, Puchta H (2003) Differences in the processing of DNA ends in Arabidopsis thaliana and tobacco: possible implications for genome evolution. Plant Mol Biol 51(4):523–531CrossRefGoogle Scholar
  61. 61.
    Steinert J, Schiml S, Puchta H (2016) Homology-based double-strand break-induced genome engineering in plants. Plant Cell Rep 35(7):1429–1438.  https://doi.org/10.1007/s00299-016-1981-3 CrossRefPubMedGoogle Scholar
  62. 62.
    Paszkowski J, Baur M, Bogucki A et al (1988) Gene targeting in plants. EMBO J 7(13):4021–4026CrossRefGoogle Scholar
  63. 63.
    Offringa R, de Groot MJ, Haagsman HJ et al (1990) Extrachromosomal homologous recombination and gene targeting in plant cells after Agrobacterium mediated transformation. EMBO J 9(10):3077–3084CrossRefGoogle Scholar
  64. 64.
    Beetham PR, Kipp PB, Sawycky XL et al (1999) A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Natl Acad Sci U S A 96(15):8774–8778CrossRefGoogle Scholar
  65. 65.
    Puchta H, Dujon B, Hohn B (1996) Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci U S A 93(10):5055–5060CrossRefGoogle Scholar
  66. 66.
    Wright DA, Townsend JA, Winfrey RJ et al (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44(4):693–705.  https://doi.org/10.1111/j.1365-313X.2005.02551.x CrossRefPubMedGoogle Scholar
  67. 67.
    Shukla VK, Doyon Y, Miller JC et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459(7245):437–441.  https://doi.org/10.1038/nature07992 CrossRefPubMedGoogle Scholar
  68. 68.
    Townsend JA, Wright DA, Winfrey RJ et al (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459(7245):442–445.  https://doi.org/10.1038/nature07845 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    de Pater S, Pinas JE, Hooykaas PJJ et al (2013) ZFN-mediated gene targeting of the Arabidopsis protoporphyrinogen oxidase gene through Agrobacterium-mediated floral dip transformation. Plant Biotechnol J 11(4):510–515.  https://doi.org/10.1111/pbi.12040 CrossRefPubMedGoogle Scholar
  70. 70.
    Zhang Y, Zhang F, Li X et al (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161(1):20–27.  https://doi.org/10.1104/pp.112.205179 CrossRefPubMedGoogle Scholar
  71. 71.
    Svitashev S, Young JK, Schwartz C et al (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169(2):931–945.  https://doi.org/10.1104/pp.15.00793 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Sauer NJ, Narváez-Vásquez J, Mozoruk J et al (2016) Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol 170(4):1917–1928.  https://doi.org/10.1104/pp.15.01696 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Li Z, Liu Z-B, Xing A et al (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169(2):960–970.  https://doi.org/10.1104/pp.15.00783 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Fauser F, Roth N, Pacher M et al (2012) In planta gene targeting. Proc Natl Acad Sci U S A 109(19):7535–7540.  https://doi.org/10.1073/pnas.1202191109 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Schiml S, Fauser F, Puchta H (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80(6):1139–1150.  https://doi.org/10.1111/tpj.12704 CrossRefPubMedGoogle Scholar
  76. 76.
    Baltes NJ, Gil-Humanes J, Cermak T et al (2014) DNA replicons for plant genome engineering. Plant Cell 26(1):151–163.  https://doi.org/10.1105/tpc.113.119792 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Čermák T, Baltes NJ, Čegan R et al (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16:232.  https://doi.org/10.1186/s13059-015-0796-9 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Even-Faitelson L, Samach A, Melamed-Bessudo C et al (2011) Localized egg-cell expression of effector proteins for targeted modification of the Arabidopsis genome. Plant J 68(5):929–937.  https://doi.org/10.1111/j.1365-313X.2011.04741.x CrossRefPubMedGoogle Scholar
  79. 79.
    Shaked H, Melamed-Bessudo C, Levy AA (2005) High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci U S A 102(34):12265–12269.  https://doi.org/10.1073/pnas.0502601102 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Qi Y, Zhang Y, Zhang F et al (2013) Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res 23(3):547–554.  https://doi.org/10.1101/gr.145557.112 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Endo M, Mikami M, Toki S (2016) Biallelic gene targeting in rice. Plant Physiol 170(2):667–677.  https://doi.org/10.1104/pp.15.01663 CrossRefPubMedGoogle Scholar
  82. 82.
    Mimitou EP, Symington LS (2010) Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2. EMBO J 29(19):3358–3369.  https://doi.org/10.1038/emboj.2010.193 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211.  https://doi.org/10.1146/annurev.biochem.052308.093131 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Tamura K, Adachi Y, Chiba K et al (2002) Identification of Ku70 and Ku80 homologues in Arabidopsis thaliana: evidence for a role in the repair of DNA double-strand breaks. Plant J 29(6):771–781CrossRefGoogle Scholar
  85. 85.
    West CE, Waterworth WM, Jiang Q et al (2000) Arabidopsis DNA ligase IV is induced by gamma-irradiation and interacts with an Arabidopsis homologue of the double strand break repair protein XRCC4. Plant J 24(1):67–78CrossRefGoogle Scholar
  86. 86.
    Friesner J, Britt AB (2003) Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant J 34(4):427–440CrossRefGoogle Scholar
  87. 87.
    Nishizawa-Yokoi A, Nonaka S, Saika H et al (2012) Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice. New Phytol 196(4):1048–1059.  https://doi.org/10.1111/j.1469-8137.2012.04350.x CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Gallego ME, Jalut N, White CI (2003) Telomerase dependence of telomere lengthening in Ku80 mutant Arabidopsis. Plant Cell 15(3):782–789CrossRefGoogle Scholar
  89. 89.
    Stolarek M, Gruszka D, Braszewska-Zalewska A et al (2015) Functional analysis of the new barley gene HvKu80 indicates that it plays a key role in double-strand DNA break repair and telomere length regulation. Mutagenesis 30(6):785–797.  https://doi.org/10.1093/mutage/gev033 CrossRefPubMedGoogle Scholar
  90. 90.
    Bleuyard J-Y, Gallego ME, White CI (2006) Recent advances in understanding of the DNA double-strand break repair machinery of plants. DNA Repair (Amst) 5(1):1–12.  https://doi.org/10.1016/j.dnarep.2005.08.017 CrossRefGoogle Scholar
  91. 91.
    Charbonnel C, Gallego ME, White CI (2010) Xrcc1-dependent and Ku-dependent DNA double-strand break repair kinetics in Arabidopsis plants. Plant J 64(2):280–290.  https://doi.org/10.1111/j.1365-313X.2010.04331.x CrossRefPubMedGoogle Scholar
  92. 92.
    Jia Q, den Dulk-Ras A, Shen H et al (2013) Poly(ADP-ribose)polymerases are involved in microhomology mediated back-up non-homologous end joining in Arabidopsis thaliana. Plant Mol Biol 82(4–5):339–351.  https://doi.org/10.1007/s11103-013-0065-9 CrossRefPubMedGoogle Scholar
  93. 93.
    Shen H, Strunks GD, Klemann BJPM et al (2017) CRISPR/Cas9-induced double-strand break repair in arabidopsis nonhomologous end-joining mutants. G3 (Bethesda) 7(1):193–202.  https://doi.org/10.1534/g3.116.035204 CrossRefGoogle Scholar
  94. 94.
    Wang H, Xu X (2017) Microhomology-mediated end joining: new players join the team. Cell Biosci 7:6.  https://doi.org/10.1186/s13578-017-0136-8 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Truong LN, Li Y, Shi LZ et al (2013) Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc Natl Acad Sci U S A 110(19):7720–7725.  https://doi.org/10.1073/pnas.1213431110 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Wyatt DW, Feng W, Conlin MP et al (2016) Essential roles for polymerase θ-mediated end joining in the repair of chromosome breaks. Mol Cell 63(4):662–673.  https://doi.org/10.1016/j.molcel.2016.06.020 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Zahn KE, Averill AM, Aller P et al (2015) Human DNA polymerase θ grasps the primer terminus to mediate DNA repair. Nat Struct Mol Biol 22(4):304–311.  https://doi.org/10.1038/nsmb.2993 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Bennardo N, Cheng A, Huang N et al (2008) Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet 4(6):e1000110.  https://doi.org/10.1371/journal.pgen.1000110 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Chan SH, Yu AM, McVey M (2010) Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila. PLoS Genet 6(7):e1001005.  https://doi.org/10.1371/journal.pgen.1001005 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Kent T, Chandramouly G, McDevitt SM et al (2015) Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase θ. Nat Struct Mol Biol 22(3):230–237.  https://doi.org/10.1038/nsmb.2961 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Mateos-Gomez PA, Gong F, Nair N et al (2015) Mammalian polymerase [thgr] promotes alternative NHEJ and suppresses recombination. Nature 518(7538):254–257CrossRefGoogle Scholar
  102. 102.
    Ceccaldi R, Liu JC, Amunugama R et al (2015) Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 518(7538):258–262.  https://doi.org/10.1038/nature14184 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Inagaki S, Nakamura K, Morikami A (2009) A link among DNA replication, recombination, and gene expression revealed by genetic and genomic analysis of TEBICHI gene of Arabidopsis thaliana. PLoS Genet 5(8):e1000613.  https://doi.org/10.1371/journal.pgen.1000613 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Klemm T, Mannuß A, Kobbe D et al (2017) The DNA translocase RAD5A acts independently of the other main DNA repair pathways and requires both its ATPase and RING domain for activity in Arabidopsis thaliana. Plant J 91(4):725–740.  https://doi.org/10.1111/tpj.13602 CrossRefPubMedGoogle Scholar
  105. 105.
    van Kregten M, de Pater S, Romeijn R et al (2016) T-DNA integration in plants results from polymerase-θ-mediated DNA repair. Nat Plants 2(11):16164.  https://doi.org/10.1038/nplants.2016.164 CrossRefPubMedGoogle Scholar
  106. 106.
    Yu AM, McVey M (2010) Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res 38(17):5706–5717.  https://doi.org/10.1093/nar/gkq379 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Gorbunova V, Levy AA (1997) Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res 25(22):4650–4657CrossRefGoogle Scholar
  108. 108.
    Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17(20):6086–6095.  https://doi.org/10.1093/emboj/17.20.6086 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Geisinger JM, Turan S, Hernandez S et al (2016) In vivo blunt-end cloning through CRISPR/Cas9-facilitated non-homologous end-joining. Nucleic Acids Res 44(8):e76.  https://doi.org/10.1093/nar/gkv1542 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Li J, Meng X, Zong Y et al (2016) Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat Plants 2:16139.  https://doi.org/10.1038/nplants.2016.139 CrossRefPubMedGoogle Scholar
  111. 111.
    Schiml S, Fauser F, Puchta H (2016) Repair of adjacent single-strand breaks is often accompanied by the formation of tandem sequence duplications in plant genomes. Proc Natl Acad Sci U S A 113(26):7266–7271.  https://doi.org/10.1073/pnas.1603823113 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Vaughn JN, Bennetzen JL (2014) Natural insertions in rice commonly form tandem duplications indicative of patch-mediated double-strand break induction and repair. Proc Natl Acad Sci U S A 111(18):6684–6689.  https://doi.org/10.1073/pnas.1321854111 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8(2):135–141.  https://doi.org/10.1016/j.pbi.2005.01.001 CrossRefPubMedGoogle Scholar
  114. 114.
    Bennetzen JL, Wang H (2014) The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol 65:505–530.  https://doi.org/10.1146/annurev-arplant-050213-035811 CrossRefPubMedGoogle Scholar
  115. 115.
    Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12(7):1075–1079.  https://doi.org/10.1101/gr.132102 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Schubert I, Vu GTH (2016) Genome Stability and Evolution: Attempting a Holistic View. Trends Plant Sci 21(9):749–757.  https://doi.org/10.1016/j.tplants.2016.06.003 CrossRefPubMedGoogle Scholar
  117. 117.
    Hawkins JS, Proulx SR, Rapp RA et al (2009) Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc Natl Acad Sci U S A 106(42):17811–17816.  https://doi.org/10.1073/pnas.0904339106 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Cavalier-Smith T (2005) Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Ann Bot 95(1):147–175.  https://doi.org/10.1093/aob/mci010 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    van Overbeek M, Capurso D, Carter MM et al (2016) DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Mol Cell 63(4):633–646.  https://doi.org/10.1016/j.molcel.2016.06.037 CrossRefPubMedGoogle Scholar
  120. 120.
    Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823.  https://doi.org/10.1126/science.1231143 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Li J-F, Norville JE, Aach J et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688–691.  https://doi.org/10.1038/nbt.2654 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Wang H, Yang H, Shivalila CS et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918.  https://doi.org/10.1016/j.cell.2013.04.025 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Wang M, Mao Y, Lu Y et al (2017) Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol Plant 10(7):1011–1013.  https://doi.org/10.1016/j.molp.2017.03.001 CrossRefPubMedGoogle Scholar
  124. 124.
    Zetsche B, Heidenreich M, Mohanraju P et al (2017) Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol 35(1):31–34.  https://doi.org/10.1038/nbt.3737 CrossRefPubMedGoogle Scholar
  125. 125.
    Williams GJ, Lees-Miller SP, Tainer JA (2010) Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks. DNA Repair (Amst) 9(12):1299–1306.  https://doi.org/10.1016/j.dnarep.2010.10.001 CrossRefGoogle Scholar
  126. 126.
    Zapata L, Ding J, Willing E-M et al (2016) Chromosome-level assembly of Arabidopsis thaliana Ler reveals the extent of translocation and inversion polymorphisms. Proc Natl Acad Sci U S A 113(28):60.  https://doi.org/10.1073/pnas.1607532113 CrossRefGoogle Scholar
  127. 127.
    Petolino JF, Worden A, Curlee K et al (2010) Zinc finger nuclease-mediated transgene deletion. Plant Mol Biol 73(6):617–628.  https://doi.org/10.1007/s11103-010-9641-4 CrossRefPubMedGoogle Scholar
  128. 128.
    Kapusi E, Corcuera-Gómez M, Melnik S et al (2017) Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Front Plant Sci 8:540.  https://doi.org/10.3389/fpls.2017.00540 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Qi Y, Li X, Zhang Y et al (2013) Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3 (Bethesda) 3(10):1707–1715.  https://doi.org/10.1534/g3.113.006270 CrossRefPubMedCentralGoogle Scholar
  130. 130.
    Ordon J, Gantner J, Kemna J et al (2017) Generation of chromosomal deletions in dicotyledonous plants employing a user-friendly genome editing toolkit. Plant J 89(1):155–168.  https://doi.org/10.1111/tpj.13319 CrossRefPubMedGoogle Scholar
  131. 131.
    Zhou H, Liu B, Weeks DP et al (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42(17):10903–10914.  https://doi.org/10.1093/nar/gku806 CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Fransz PF, Armstrong S, de Jong JH et al (2000) Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell 100(3):367–376CrossRefGoogle Scholar
  133. 133.
    Lee HJ, Kweon J, Kim E et al (2012) Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res 22(3):539–548.  https://doi.org/10.1101/gr.129635.111 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Li Y, Park AI, Mou H et al (2015) A versatile reporter system for CRISPR-mediated chromosomal rearrangements. Genome Biol 16:111.  https://doi.org/10.1186/s13059-015-0680-7 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Zhang C, Liu C, Weng J et al (2017) Creation of targeted inversion mutations in plants using an RNA-guided endonuclease. Crop J 5(1):83–88.  https://doi.org/10.1016/j.cj.2016.08.001 CrossRefGoogle Scholar
  136. 136.
    Pacher M, Schmidt-Puchta W, Puchta H (2007) Two unlinked double-strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and nonhomologous end joining. Genetics 175(1):21–29.  https://doi.org/10.1534/genetics.106.065185 CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Weinthal DM, Taylor RA, Tzfira T (2013) Nonhomologous end joining-mediated gene replacement in plant cells. Plant Physiol 162(1):390–400.  https://doi.org/10.1104/pp.112.212910 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Zheng Q, Cai X, Tan MH et al (2014) Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells. BioTechniques 57(3):115–124.  https://doi.org/10.2144/000114196 CrossRefPubMedGoogle Scholar
  139. 139.
    Byrne SM, Ortiz L, Mali P et al (2015) Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res 43(3):e21.  https://doi.org/10.1093/nar/gku1246 CrossRefPubMedGoogle Scholar
  140. 140.
    Arazoe T, Miyoshi K, Yamato T et al (2015) Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng 112(12):2543–2549.  https://doi.org/10.1002/bit.25662 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Botanical Institute, Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations