Advertisement

Poplar Transformation

  • Tobias Bruegmann
  • Olaf Polak
  • Khira Deecke
  • Julia Nietsch
  • Matthias Fladung
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1864)

Abstract

First publications of successful Agrobacterium-mediated transformation of tobacco were published more than 30 years ago. Protocols for Agrobacterium-based transformation as well as biolistic bombardment and PEG transformation of protoplasts are available for more than 150 plant species from various plant families. Also for many Populus species and hybrids, adapted transformation protocols have been published. The standard protocol for Agrobacterium-mediated transformation of different Populus genotypes is the leaf-disc method. Here, we first describe the transfer of genes into poplar by using the Agrobacterium-based leaf disc methods. In addition, alternative basic transformation methods, namely, biolistic bombardment and PEG transformation of protoplasts, are also described. Further, we present improved poplar transformation protocols by simplifying the transformation procedure and optimizing tissue preparation and plant regeneration.

Key words

Populus Protoplast Regenerating callus Suspension culture Micro-explant Plant tissue culture 

Notes

Acknowledgments

We would like to thank all technical assistants of the genome research group for valuable input, namely, Susanne Jelkmann, Denise Lehnhardt, Jennifer Lüneburg, Anke Schellhorn, and Doris Ebbinghaus.

References

  1. 1.
    Van Montagu M (2011) It is a long way to GM agriculture. Ann Rev Plant Biol 62:1–23CrossRefGoogle Scholar
  2. 2.
    Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucl Acid Res 12:8711–8721CrossRefGoogle Scholar
  3. 3.
    Horsch RB, Fry JE, Hoffman NL et al (1985) A simple and general method for transferring genes into plants. Science 227:1229–1232CrossRefGoogle Scholar
  4. 4.
    Herrera-Estrella L, De Block M, Messens EHJP et al (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J 2:987CrossRefGoogle Scholar
  5. 5.
    Kempken F, Kempken R (2012) Gentechnik bei Pflanzen: Chancen und Risiken. Springer, HeidelbergCrossRefGoogle Scholar
  6. 6.
    De Block M (1990) Factors influencing the tissue culture and the Agrobacterium tumefaciens-mediated transformation of hybrid aspen and poplar clones. Plant Physiol 93:1110–1116CrossRefGoogle Scholar
  7. 7.
    Ahuja MR (1993) Regeneration and germplasm preservation in aspen-populus. In: Ahuja MR (ed) Micropropagation of woody plants. Springer, Netherlands, pp 187–194CrossRefGoogle Scholar
  8. 8.
    Fillatti JJ, Sellmer J, McCown B et al (1987) Agrobacterium mediated transformation and regeneration of Populus. Mol Gen Genet 206:192–199CrossRefGoogle Scholar
  9. 9.
    Peña L, Séguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 19:500–506CrossRefGoogle Scholar
  10. 10.
    Busov V, Strauss S, Pilate G (2010) Transformation as a tool for genetic analysis in Populus. In: Jansson S et al. (eds) Genetics and genomics of Populus, vol 8. Plant Genetics and Genomics: Crops and Models. pp 113–128Google Scholar
  11. 11.
    Horsch RB, Fry JE, Hoffmann NL et al (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231CrossRefGoogle Scholar
  12. 12.
    Leple JC, Brasileiro ACM, Michel MF, Delmotte F, Jouanin L (1992) Transgenic poplars: expression of chimeric genes using four different constructs. Plant Cell Rep 11:137–141CrossRefGoogle Scholar
  13. 13.
    Fladung M, Muhs HJ, Ahuja MR (1996) Morphological changes observed in transgenic Populus carrying the rolC gene from Agrobacterium rhizogenes. Silv Genet 45:349–354Google Scholar
  14. 14.
    Fladung M, Kumar S, Ahuja MR (1997) Genetic transformation of Populus genotypes with different chimaeric gene constructs: transformation efficiency and molecular analysis. Trans Res 6:111–121CrossRefGoogle Scholar
  15. 15.
    Kumar S, Fladung M (2001) Gene stability in transgenic aspen (Populus). II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta 213:731–740CrossRefGoogle Scholar
  16. 16.
    Yevtushenko DP, Misra S (2010) Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. × P. maximowiczii A. Henry. Plant Cell Rep 29:211–221CrossRefGoogle Scholar
  17. 17.
    Wang H, Wang C, Liu H et al (2011) An efficient Agrobacterium-mediated transformation and regeneration system for leaf explants of two elite aspen hybrid clones Populus alba × P. berolinensis and Populus davidiana × P. bolleana. Plant Cell Rep 30:2037–2044CrossRefGoogle Scholar
  18. 18.
    Maheshwari P, Kovalchuk I (2016) Agrobacterium-mediated stable genetic transformation of Populus angustifolia and Populus balsamifera. Front Plant Sci 7:296CrossRefGoogle Scholar
  19. 19.
    Cseke LJ, Cseke SB, Podila GK (2007) High efficiency poplar transformation. Plant Cell Rep 26:1529–1538CrossRefGoogle Scholar
  20. 20.
    Nietsch J, Brügmann T, Becker D, Fladung M (2017) Old methods rediscovered: application and improvement of two direct transformation methods to hybrid poplar (Populus tremula × P. alba). Plant Cell Tissue Organ Cult 130:183–196CrossRefGoogle Scholar
  21. 21.
    McCown BH, McCabe D, Russell D, Robinson D, Barton K, Raffa K (1991) Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Rep 9:590–594CrossRefGoogle Scholar
  22. 22.
    Russell JA, McCown BH (1986) Culture and regeneration of Populus leaf protoplasts isolated from non-seedling tissue. Plant Sci 46:133–142CrossRefGoogle Scholar
  23. 23.
    Chupeau MC, Pautot V, Chupeau Y (1994) Recovery of transgenic trees after electroporation of poplar protoplasts. Trans Res 3:13–19CrossRefGoogle Scholar
  24. 24.
    Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protocol 2:1565–1572CrossRefGoogle Scholar
  25. 25.
    Hamilton RH, Fall MZ (1971) The loss of tumor-initiating ability in Agrobacterium tumefaciens by incubation at high temperature. Cell Mol Life Sci 27:229–230CrossRefGoogle Scholar
  26. 26.
    Hoeckema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180CrossRefGoogle Scholar
  27. 27.
    Mader M, Le Paslier MC, Bounon R et al (2016) Whole-genome draft assembly of Populus tremula × Populus alba clone INRA 717-1B4. Silvae Genetica 65:2CrossRefGoogle Scholar
  28. 28.
    Lloyd G, McCown B (1980) Commercially-feasible micro-propagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Int Plant Prop Soc Proc 30:421–426Google Scholar
  29. 29.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  30. 30.
    Bridson EY, Brecker A (1970) Chapter III Design and formulation of microbial culture media. Meth Microbiol 3:229–295CrossRefGoogle Scholar
  31. 31.
    Wise AA, Liu Z, Binns AN (2006) Culture and maintenance of Agrobacterium strains. In: Methods in molecular biology, vol 343, Agrobacterium protocols. pp. 3–14Google Scholar
  32. 32.
    Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463CrossRefGoogle Scholar
  33. 33.
    Fladung M, Polak O (2012) Ac/Ds-transposon activation tagging in poplar: a powerful tool for gene discovery. BMC Genomics 13:61CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tobias Bruegmann
    • 1
  • Olaf Polak
    • 1
  • Khira Deecke
    • 1
  • Julia Nietsch
    • 2
  • Matthias Fladung
    • 1
  1. 1.Thuenen Institute of Forest GeneticsGrosshansdorfGermany
  2. 2.CGS Crop Genetic SystemsHamburgGermany

Personalised recommendations