Repurposing Macromolecule Delivery Tools for Plant Genetic Modification in the Era of Precision Genome Engineering

  • Qiudeng QueEmail author
  • Mary-Dell M. Chilton
  • Sivamani Elumalai
  • Heng Zhong
  • Shujie Dong
  • Liang Shi
Part of the Methods in Molecular Biology book series (MIMB, volume 1864)


Efficient delivery of macromolecules into plant cells and tissues is important for both basic research and biotechnology product applications. In transgenic research, the goal is to deliver DNA molecules into regenerable cells and stably integrate them into the genome. Over the past 40 years, many macromolecule delivery methods have been studied. To generate transgenic plants, particle bombardment and Agrobacterium-mediated transformation are the methods of choice for DNA delivery. The rapid advance of genome editing technologies has generated new requirements on large biomolecule delivery and at the same time reinvigorated the development of new transformation technologies. Many of the gene delivery options that have been studied before are now being repurposed for delivering genome editing machinery for various applications. This article reviews the major progress in the development of tools for large biomolecule delivery into plant cells in the new era of precision genome engineering.

Key words

Direct delivery Biolistic transformation Agrobacterium-mediated transformation Protoplast transformation Macromolecule delivery DNA-free delivery Cell-penetrating peptides Genome engineering 


  1. 1.
    Barton KA, Binns AN, Matzke AJM, Chilton MD (1983) Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32:1033–1043PubMedGoogle Scholar
  2. 2.
    Caplan A, Herrera-Estrella L, Inze D, Van Haute E, Van Montagu M, Schell J, Zambryski P (1983) Introduction of genetic material into plant cells. Science 222:815–821PubMedGoogle Scholar
  3. 3.
    Murai N, Kemp JD, Sutton DW, Murray MG, Slightom JL et al (1983) Phaseolin gene from bean is expressed after transfer to sunflower via tumor-inducing plasmid vectors. Science 222:476–482PubMedGoogle Scholar
  4. 4.
    Milfin BJ (1985) The potential use of novel techniques in plant breeding. Hereditas 103(S3):97–107Google Scholar
  5. 5.
    Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326PubMedGoogle Scholar
  6. 6.
    Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231PubMedGoogle Scholar
  7. 7.
    Rakoczy-Trojanowska M (2002) Alternative methods of plant transformation- a short review. Cell Mol Biol Lett 7:849–858PubMedGoogle Scholar
  8. 8.
    Barampuram S, Zhang ZJ (2011) Recent advances in plant transformation. Methods Mol Biol 701:1–35PubMedGoogle Scholar
  9. 9.
    Rivera AL, Gómez-Lim M, Fernández F, Loske AM (2012) Physical methods for genetic plant transformation. Phys Life Rev 9:308–345PubMedGoogle Scholar
  10. 10.
    Que Q, Elumalai S, Li X, Zhong H, Nalapalli S et al (2014) Maize transformation technology development for commercial event generation. Front Plant Sci 5:379. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ishida Y, Hiei Y, Komari T (2007) Agrobacterium- mediated transformation of maize. Nat Protoc 2:1614–1621PubMedGoogle Scholar
  12. 12.
    Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP et al (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28:1510–1520PubMedPubMedCentralGoogle Scholar
  13. 13.
    Sugar IP, Newmann E (1984) Stochastic model for electric field-induced membrane pores electroporation. Biophys Chem 19:211–225PubMedGoogle Scholar
  14. 14.
    Morikawa H, Yamada Y (1985) Capillary microinjection into protoplasts and intranuclear localization of injected materials. Plant Cell Physiol 26:229–236Google Scholar
  15. 15.
    Sanford JC (1988) The biolistic process. Trends Biotechnol 6:299–302Google Scholar
  16. 16.
    Kaeppler H, Gu W, Somers DA, Rines HW, Cockburn AF (1990) Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Rep 9:415–418PubMedGoogle Scholar
  17. 17.
    Joersbo M, Brunstedt J (1990) Direct gene transfer to plant protoplasts by mild sonication. Plant Cell Rep 9:207–210PubMedGoogle Scholar
  18. 18.
    Mets LJ (1993) Aerosol beam microinjector. US Patent 5,240,842, 31 Aug 1993Google Scholar
  19. 19.
    Bottino PJ (1975) The potential of genetic manipulation in plant cell cultures for plant breeding. Radiat Bot 15:1–16Google Scholar
  20. 20.
    Lurquin PF (1979) Entrapment of plasmid DNA by liposomes and their interactions with plant protoplasts. Nucleic Acids Res 6:3773–3784PubMedPubMedCentralGoogle Scholar
  21. 21.
    Davey MR, Cocking EC, Freeman J, Pearce N, Tudor I (1980) Transformation of Petunia protoplasts by isolated Agrobacterium plasmids. Plant Sci Lett 18:307–313Google Scholar
  22. 22.
    Krens FA, Molendijk L, Wullens GJ, Schilperoort RA (1982) In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296:72–74Google Scholar
  23. 23.
    Nagata T, Okada K, Takebe R, Matsui C (1981) Delivery of tobacco mosaic virus RNA into plant protoplasts mediated by reverse-phase evaporation vesicles (liposomes). Mol Gen Genet 184:161–165Google Scholar
  24. 24.
    Fraley RT, Rogers SG, Horsch RB, Sanders P, Flick J et al (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci U S A 80:4803–4807PubMedPubMedCentralGoogle Scholar
  25. 25.
    Zimmerman U (1982) Electric field-mediated fusion and related electrical phenomena. Biochim Biophys Acta 694:227–277Google Scholar
  26. 26.
    Fromm M, Taylor LP, Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci U S A 82:5824–5582PubMedPubMedCentralGoogle Scholar
  27. 27.
    Rhodes CA, Pierce DA, Metler IJ, Mascarenhas D, Detmer JJ (1988) Genetically transformed maize plants from protoplasts. Science 240:204–207PubMedGoogle Scholar
  28. 28.
    Toriyama KF, Arimoto Y, Uchilniya H, Hinata K (1988) Transgenic rice plants after direct gene transfer into protoplasts. Bio/Technology 6:1072–1074Google Scholar
  29. 29.
    Dekeyser RA, Claes B, De Rycke RMU, Habets ME, Van Montagu MC, Caplan AB (1990) Transient gene expression in intact and organized rice tissues. Plant Cell 2:591–602PubMedPubMedCentralGoogle Scholar
  30. 30.
    Fennell A, Hauptmann R (1992) Electroporation and PEG delivery of DNA into maize microspores. Plant Cell Rep 11:567–570PubMedGoogle Scholar
  31. 31.
    D'Halluin K, Bonne E, Bossut M, De Beuckeleer M, Leemans J (1992) Transgenic maize plants by tissue electroporation. Plant Cell 4:1495–1505PubMedPubMedCentralGoogle Scholar
  32. 32.
    Laursen CM, Krzyzek RA, Flick CE, Anderson PC, Spencer TM (1994) Production of fertile transgenic maize by electroporation of suspension culture cells. Plant Mol Biol 24:51–61PubMedGoogle Scholar
  33. 33.
    Crossway A, Oakes JV, Irvine JM, Ward B, Knauf VC, Shewmaker CK (1986) Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Mol Gen Genet 202:179–185Google Scholar
  34. 34.
    Neuhaus G, Spangenberg G, Mittelsten Scheid O, Schweiger H-G (1987) Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. Theor Appl Genet 75:30–36Google Scholar
  35. 35.
    Griesbach RJ (1987) Chromosome-mediated transformation via microinjection. Plant Sci 50:69–77Google Scholar
  36. 36.
    De la Peña A, Lörz H, Schell J (1987) Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature 325:274–276Google Scholar
  37. 37.
    Gong Z, Shen W, Zhou G, Huang J, Qian S (1988) Introducing exogenous DNA into plants after pollination-DNA traverse pathway of pollen tube reach embryonic sac. Sci China B Chem Biol Agri Med Earth Sci 31:1080–1084Google Scholar
  38. 38.
    Luo Z-X, Wu R (1988) A simple method for the transformation of rice via the pollen-tube pathway. Plant Mol Biol Rep 6:165–174Google Scholar
  39. 39.
    Langridge P, Brettschneide R, Lazzeri P, Lorz H (1992) Transformation of cereals via Agrobacterium and the pollen pathway: a critical assessment. Plant J 2:631–638Google Scholar
  40. 40.
    Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73Google Scholar
  41. 41.
    Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. J Particul Sci Technol 5:27–37Google Scholar
  42. 42.
    Klein TM, Gradziel T, Fromm ME, Stanford JC (1988) Factors influencing gene delivery into Zea mays cells by high-velocity microprojectiles. Bio/Technology 6:559–563Google Scholar
  43. 43.
    Christou P, McCabe DE, Swain WF (1988) Stable transformation of soybean callus by DNA-coated gold particles. Plant Physiol 87:671–674PubMedPubMedCentralGoogle Scholar
  44. 44.
    McCabe DE, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6:923–926Google Scholar
  45. 45.
    Fromm M, Morrish F, Armstrong C, Williams R, Thomas J, Klein T (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8:833–839PubMedGoogle Scholar
  46. 46.
    Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ et al (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618PubMedPubMedCentralGoogle Scholar
  47. 47.
    Finer J, McMullen M (1990) Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep 8:586–589PubMedGoogle Scholar
  48. 48.
    Christou P, Ford TL, Kofron M (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Nat Biotechnol 9:957–962Google Scholar
  49. 49.
    Finer JJ, McMullen MD (1991) Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell Dev Biol Plant 27:175–182Google Scholar
  50. 50.
    Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technol 10:667–674Google Scholar
  51. 51.
    McCabe DE, Martinell BJ (1993) Transformation of elite cotton cultivars via particle bombardment of meristems. Bio/Technology 11:596–598Google Scholar
  52. 52.
    Martin-Ortigosa S, Wang K (2014) Proteolistics: a biolistic method for intracellular delivery of proteins. Transgenic Res 23:743–756PubMedGoogle Scholar
  53. 53.
    Kanchiswamy CN, Malnoy M, Velasco R, Jin-Soo Kim J-S, Viola R (2015) Non-GMO genetically edited crop plants. Trends Biotechnol 33:489–491PubMedGoogle Scholar
  54. 54.
    Held BM, Wilson HM, Hou L, Lewnau CJ, Eby JC (2004) Methods and compositions for the introduction of molecules into cells. US Patent 7,314,969, 1 Jan 2008Google Scholar
  55. 55.
    Meacham JM, Durvasula K, Degertekin FL, Fedorov AG (2014) Physical methods for intracellular delivery: practical aspects from laboratory use to industrial-scale processing. J Lab Autom 19:1–18PubMedGoogle Scholar
  56. 56.
    Kaeppler H, Somers DA, Rines HW, Cockburn AF (1992) Silicon carbide fiber-mediated stable transformation of plant cells. Theor Appl Genet 84:560–566PubMedGoogle Scholar
  57. 57.
    Frame BR, Drayton PR, Bagnall SV, Lewnau CJ, Bullock WP et al (1994) Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. Plant J 6:941–948Google Scholar
  58. 58.
    Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441PubMedGoogle Scholar
  59. 59.
    Torney F, Trewyn BG, Lin VS-Y, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300PubMedGoogle Scholar
  60. 60.
    Martin-Ortigosa S, Valenstein JS, Lin VS-Y, Trewyn BG, Wang K (2012) Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Adv Funct Mater 22:3576–3582Google Scholar
  61. 61.
    Derossi D, Joliott MH, Chassaingl G, Prochiantztn A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450PubMedGoogle Scholar
  62. 62.
    Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017PubMedGoogle Scholar
  63. 63.
    Lindgren M, Hällbrink M, Prochiantz A, Langel Ü (2000) Cell-penetrating peptides. Trends Pharmacol Sci 21:99–103PubMedGoogle Scholar
  64. 64.
    Zorko M, Langel U (2005) Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 57:529–545PubMedGoogle Scholar
  65. 65.
    Elmquist A, Lindgren M, Bartfai T, Langel Ü (2001) VE-cadherin derived cell-penetrating peptide, pVEC, with carrier functions. Exp Cell Res 269:237–244PubMedGoogle Scholar
  66. 66.
    Unnamalai N, Kang BG, Lee WS (2004) Cationic oligopeptide-mediated delivery of dsRNA for post-transcriptional gene silencing in plant cells. FEBS Lett 566:307–310PubMedGoogle Scholar
  67. 67.
    Mäe M, Myrberg H, Jiang Y, Paves H, Valkna A, Langel Ü (2005) Internalisation of cell-penetrating peptides into tobacco protoplasts. Biochim Biophys Acta 1669:101–107PubMedGoogle Scholar
  68. 68.
    Chang M, Chou JC, Lee HJ (2005) Cellular internalization of fluorescent proteins via arginine-rich intracellular delivery peptide in plant cells. Plant Cell Physiol 46:482–488PubMedGoogle Scholar
  69. 69.
    Chen C-P, Chou J-C, Liu BR, Chang M, Lee H-J (2007) Transfection and expression of plasmid DNA in plant cells by an arginine-rich intracellular delivery peptide without protoplast preparation. FEBS Lett 581:1891–1897PubMedGoogle Scholar
  70. 70.
    Chugh A, Eudes F (2008a) Cellular uptake of cell-penetrating peptides pVEC and transportan in plants. J Pept Sci 14:477–481PubMedGoogle Scholar
  71. 71.
    Chugh A, Eudes F (2008b) Studies of uptake of cell-penetrating peptides and their cargoes in wheat immature embryos. FEBS J 275:2403–2414PubMedGoogle Scholar
  72. 72.
    Chugh A, Amundsen E, Eudes F (2009) Translocation of cell-penetrating peptides and delivery of their cargoes in triticale microspores. Plant Cell Rep 28:801–810PubMedGoogle Scholar
  73. 73.
    Numata K, Ohtani M, Yoshizumi T, Demura T, Kodama Y (2014) Local gene silencing in plants via synthetic dsRNA and carrier peptide. Plant Biotechnol J 12:1027–1034PubMedGoogle Scholar
  74. 74.
    Ng KK, Motoda Y, Watanabe S, Sofiman Othman A, Kigawa T, Kodama Y et al (2016) Intracellular delivery of proteins via fusion peptides in intact plants. PLoS One 11:e0154081PubMedPubMedCentralGoogle Scholar
  75. 75.
    Chilton M-D, Drummond MH, Merio DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271PubMedGoogle Scholar
  76. 76.
    Binns AN (2002) T-DNA of Agrobacterium tumefaciens: 25 years and counting. Trends Plant Sci 7:231–233PubMedGoogle Scholar
  77. 77.
    Binns AN, Thomashow MF (1988) Cell biology of Agrobacterium infection and transformation. Annu Rev Microbiol 42:575–606Google Scholar
  78. 78.
    Stachel SE, Nester EW (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J 5:1445–1454PubMedPubMedCentralGoogle Scholar
  79. 79.
    Rogowsky PM, Close TJ, Chimera JA, Shaw JJ, Kado CI (1987) Regulation of vir genes of Agrobacterium tumefaciens plasmid pTiC58. J Bacteriol 169:5101–5112PubMedPubMedCentralGoogle Scholar
  80. 80.
    DeFramond AJ, Barton KA, Chilton MD (1983) Mini-Ti: a new vector strategy for plant genetic engineering. Bio/Technology 1:262–269Google Scholar
  81. 81.
    Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303:179–180Google Scholar
  82. 82.
    Christie PJ, Vogel JP (2000) Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol 8:354–360PubMedPubMedCentralGoogle Scholar
  83. 83.
    Zupan JR, Doyle W, Zambryski P (1998) Assembly of the VirB transport complex for DNA transfer from Agrobacterium tumefaciens to plant cells. Curr Opin Microbiol 1:649–655PubMedGoogle Scholar
  84. 84.
    Juhas M, Crook DW, Hood DW (2008) Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cell Microbiol 10:2377–2386PubMedPubMedCentralGoogle Scholar
  85. 85.
    Stachel SE, Timmerman B, Zambryski P (1986) Generation of single stranded T-DNA molecules during the initial stages of T-DNA transfer from Agrobacterium tumefaciens to plant cells. Nature 322:706–712Google Scholar
  86. 86.
    Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154PubMedGoogle Scholar
  87. 87.
    Sheikholeslam SN, Weeks DP (1987) Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Mol Biol 8:291–298PubMedGoogle Scholar
  88. 88.
    Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282Google Scholar
  89. 89.
    Komori T, Imayama T, Kato N, Ishida Y, Ueki J, Komari T (2007) Current status of binary vectors and superbinary vectors. Plant Physiol 145:1155–1160PubMedPubMedCentralGoogle Scholar
  90. 90.
    Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Rev 67:16–37Google Scholar
  91. 91.
    Cascales E, Christie PJ (2003) The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1:137–149PubMedGoogle Scholar
  92. 92.
    Vergunst AC, Schrammeijer B, den Dulk-Ras A, de Vlaam CMT, Regensburg-Tuïnk TJG, Hooykaas PJJ (2000) VirB/D4-Dependent protein translocation from Agrobacterium into plant cells. Science 290:979–982PubMedGoogle Scholar
  93. 93.
    Van Kregten M (2011) VirD2 of Agrobacterium tumefaciens: functional domains and biotechnological applications. Doctoral thesis, Leiden UniversityGoogle Scholar
  94. 94.
    Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA et al (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633PubMedGoogle Scholar
  95. 95.
    Wendt T, Doohan F, Mullins E (2012) Production of Phytophthora infestans- resistant potato (Solanum tuberosum) utilising Ensifer adhaerens OV14. Transgenic Res 21:567–578PubMedGoogle Scholar
  96. 96.
    Salmond GPC (1994) Secretion of extracellular virulence factors by plant pathogenic bacteria. Annu Rev Phytopathol 32:181–200Google Scholar
  97. 97.
    Green ER, Mecsas J (2016) Bacterial secretion systems – an overview. Microbiol Spectr 4:1. CrossRefGoogle Scholar
  98. 98.
    He SY, Nomura K, Whittam TS (2004) Type III protein secretion mechanism in mammalian and plant pathogens. Biochim Biophys Acta 1694:181–206PubMedGoogle Scholar
  99. 99.
    Sugio A, Yang B, Zhu T, White FF (2007) Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIA_1 and OsTFX1 during bacterial blight of rice. Proc Natl Acad Sci U S A 104:10720–10725PubMedPubMedCentralGoogle Scholar
  100. 100.
    Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN- based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392PubMedGoogle Scholar
  101. 101.
    Jia J, Jin Y, Bian T, Wu D, Yang L et al (2014) Bacterial delivery of TALEN proteins for human genome editing. PLoS One 9:e91547. CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Marie C, Broughton WJ, Deakin WJ (2001) Rhizobium type III secretion systems: legume charmers or alarmers? Curr Opin Plant Biol 4:336–342PubMedGoogle Scholar
  103. 103.
    Gleba Y, Klimyuk V, Sylvestre Marillonnet S (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18:134–141PubMedGoogle Scholar
  104. 104.
    Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol 23:718–723Google Scholar
  105. 105.
    Marton I, Zuker A, Shklarman E, Zeevi V, Tovkach A, Roffe S, Ovadis M, Tzfira T, Vainstein A (2010) Nontransgenic genome modification in plant cells. Plant Physiol 154:1079–1087PubMedPubMedCentralGoogle Scholar
  106. 106.
    Baltes NJ, Gil-Humanes J, Čermák T, Atkins PA, Voytas DF (2014) DNA replicons for plant genome engineering. Plant Cell 26:151–163PubMedPubMedCentralGoogle Scholar
  107. 107.
    Čermák T, Baltes NJ, Čegan R, Zhang Y, Voytas DF (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16:232. CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV et al (2017) High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89:1251–1262PubMedGoogle Scholar
  109. 109.
    Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019PubMedPubMedCentralGoogle Scholar
  110. 110.
    Sung YH, Kim JM, Kim HT, Lee J, Jeon J et al (2014) Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Res 24:125–131PubMedPubMedCentralGoogle Scholar
  111. 111.
    Ramakrishna S, Dad A-BK, Beloor J, Gopalappa R, Lee S-K, Kim H (2014) Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 24:1020–1027PubMedPubMedCentralGoogle Scholar
  112. 112.
    Luo S, Li J, Stoddard TJ, Baltes NJ, Demorest ZL et al (2015) Non-transgenic plant genome editing using purified sequence-specific nucleases. Mol Plant 8:1425–1427PubMedGoogle Scholar
  113. 113.
    Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim S-G, Kim S-T, Choe S, Kim J-S (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164PubMedGoogle Scholar
  114. 114.
    Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu J-L, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617PubMedPubMedCentralGoogle Scholar
  115. 115.
    Svitashev S, Schwartz C, Lenders B, Young JK, Cigan AM (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13275Google Scholar
  116. 116.
    Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261PubMedPubMedCentralGoogle Scholar
  117. 117.
    Bruce BD (2000) Chloroplast transit peptides: structure, function and evolution. Trends Cell Biol 10:440–447PubMedGoogle Scholar
  118. 118.
    Gómez G, Pallás V (2010) Noncoding RNA mediated traffic of foreign mRNA into chloroplasts reveals a novel signaling mechanism in plants. PLoS One 5:e12269. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Qiudeng Que
    • 1
    Email author
  • Mary-Dell M. Chilton
    • 1
  • Sivamani Elumalai
    • 1
  • Heng Zhong
    • 1
  • Shujie Dong
    • 1
  • Liang Shi
    • 1
  1. 1.Syngenta Crop Protection, LLCResearch Triangle ParkUSA

Personalised recommendations