Advertisement

Simulation of Morphogen and Tissue Dynamics

  • Michael D. Multerer
  • Lucas D. Wittwer
  • Anna Stopka
  • Diana Barac
  • Christine Lang
  • Dagmar Iber
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1863)

Abstract

Morphogenesis, the process by which an adult organism emerges from a single cell, has fascinated humans for a long time. Modeling this process can provide novel insights into development and the principles that orchestrate the developmental processes. This chapter focuses on the mathematical description and numerical simulation of developmental processes. In particular, we discuss the mathematical representation of morphogen and tissue dynamics on static and growing domains, as well as the corresponding tissue mechanics. In addition, we give an overview of numerical methods that are routinely used to solve the resulting systems of partial differential equations. These include the finite element method and the Lattice Boltzmann method for the discretization as well as the arbitrary Lagrangian-Eulerian method and the Diffuse-Domain method to numerically treat deforming domains.

Key words

In silico morphogenesis Morphogen dynamics Tissue dynamics Tissue mechanics 

References

  1. 1.
    Iber D (2011) Inferring Biological Mechanisms by Data-Based Mathematical Modelling: Compartment-Specific Gene Activation during Sporulation in Bacillus subtilis as a Test Case. Adv Bioinformatics 2011:1–12Google Scholar
  2. 2.
    Iber D, Karimaddini Z, Ünal E (2015) Image-based modelling of organogenesis. Brief Bioinform.Google Scholar
  3. 3.
    Gómez HF, Georgieva L, Michos O, Iber D (2017) Image-based in silico models of organogenesis. In: Systems Biology, vol 6.Google Scholar
  4. 4.
    Mogilner A, Odde D (2011) Modeling cellular processes in 3d. Trends Cell Biol 21(12):692–700PubMedPubMedCentralGoogle Scholar
  5. 5.
    Sbalzarini IF (2013) Modeling and simulation of biological systems from image data: Prospects & Overviews. BioEssays 35(5):482–490PubMedPubMedCentralGoogle Scholar
  6. 6.
    Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2014) Molecular biology of the cell, 6th edn. Taylor & Francis, LondonGoogle Scholar
  7. 7.
    van den Hurk R, Zhao J (2005) Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology 63(6):1717–1751PubMedGoogle Scholar
  8. 8.
    Worley MI, Setiawan L, Hariharan IK (2013) Tie-dye: a combinatorial marking system to visualize and genetically manipulate clones during development in drosophila melanogaster. Development 140(15):3275–3284PubMedPubMedCentralGoogle Scholar
  9. 9.
    Ricklefs RE (2010) Embryo growth rates in birds and mammals. Funct Ecol 24(3):588–596Google Scholar
  10. 10.
    Liang X, Michael M, Gomez GA (2016) Measurement of mechanical tension at cell-cell junctions using two-photon laser ablation. Bio Protoc 6(24):e2068Google Scholar
  11. 11.
    Eden E, Geva-Zatorsky N, Issaeva I, Cohen A, Dekel E, Danon T, Cohen L, Mayo A, Alon U (2011) Proteome half-life dynamics in living human cells. Science 331(6018):764–768PubMedGoogle Scholar
  12. 12.
    Müller P, Rogers KW, Shuizi RY, Brand M, Schier AF (2013) Morphogen transport. Development 140(8):1621–1638PubMedPubMedCentralGoogle Scholar
  13. 13.
    Forgacs G, Foty RA, Shafrir Y, Steinberg MS (1998) Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys J 74(5):2227–2234PubMedPubMedCentralGoogle Scholar
  14. 14.
    Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc B 237(641):37–72Google Scholar
  15. 15.
    Dierick HA, Bejsovec A (1998) Functional analysis of wingless reveals a link between intercellular ligand transport and dorsal-cell-specific signaling. Development 125(23):4729–4738Google Scholar
  16. 16.
    Ramírez-Weber FA, Kornberg TB (1999) Cytonemes: cellular processes that project to the principal signaling center in drosophila imaginal discs. Cell 97(5):599–607Google Scholar
  17. 17.
    Rodman J, Mercer R, Stahl P (1990) Endocytosis and transcytosis. Curr Opin Cell Biol 2(4):664–672PubMedGoogle Scholar
  18. 18.
    Entchev EV, Schwabedissen A, González-Gaitán M (2000) Gradient formation of the TGF-β homolog dpp. Cell 103(6):981–992PubMedGoogle Scholar
  19. 19.
    Lander AD, Nie Q, Wan FY (2002) Do morphogen gradients arise by diffusion? Dev Cell 2(6):785–796PubMedGoogle Scholar
  20. 20.
    Schwank G, Dalessi S, Yang SF, Yagi R, de Lachapelle AM, Affolter M, Bergmann S, Basler K (2011) Formation of the long range dpp morphogen gradient. PLoS Biol 9(7):1–13PubMedPubMedCentralGoogle Scholar
  21. 21.
    Kornberg TB, Roy S (2014) Cytonemes as specialized signaling filopodia. Development 141(4):729–736PubMedPubMedCentralGoogle Scholar
  22. 22.
    Bischoff M, Gradilla AC, Seijo I, Andrés G, Rodríguez-Navas C, González-Méndez L, Guerrero I (2013) Cytonemes are required for the establishment of a normal hedgehog morphogen gradient in drosophila epithelia. Nat Cell Biol 15(11):1269–1281PubMedGoogle Scholar
  23. 23.
    Sanders TA, Llagostera E, Barna M (2013) Specialized filopodia direct long-range transport of shh during vertebrate tissue patterning. Nature 497(7451):628–632PubMedPubMedCentralGoogle Scholar
  24. 24.
    Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25(1):1–47PubMedPubMedCentralGoogle Scholar
  25. 25.
    Gregor T, Bialek W, de Ruyter van Steveninck RR, Tank DW, Wieschaus EF (2005) Diffusion and scaling during early embryonic pattern formation. Proc Natl Acad Sci USA 102(51):18403–18407Google Scholar
  26. 26.
    Umulis DM, Othmer HG (2013) Mechanisms of scaling in pattern formation. Development 140(24):4830–4843PubMedPubMedCentralGoogle Scholar
  27. 27.
    Umulis DM (2009) Analysis of dynamic morphogen scale invariance. J R Soc InterfaceGoogle Scholar
  28. 28.
    Wartlick O, Mumcu P, Kicheva A, Bittig T, Seum C, Jülicher F, Gonzalez-Gaitan M (2011) Dynamics of dpp signaling and proliferation control. Science 331(6021):1154–1159PubMedGoogle Scholar
  29. 29.
    Fried P, Iber D (2014) Dynamic scaling of morphogen gradients on growing domains. Nat Commun 5:5077Google Scholar
  30. 30.
    Fried P, Iber D (2015) Read-out of dynamic morphogen gradients on growing domains. PloS ONE 10(11):e0143226PubMedPubMedCentralGoogle Scholar
  31. 31.
    Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35–55PubMedGoogle Scholar
  32. 32.
    Berg HC (1993) Random walks in biology. Princeton University Press, PrincetonGoogle Scholar
  33. 33.
    Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361Google Scholar
  34. 34.
    Kondo S, Asai R (1995) A reaction-diffusion wave on the skin of the marine angelfish pomacanthus. Nature 376(6543):765–768PubMedGoogle Scholar
  35. 35.
    Henderson J, Carter D (2002) Mechanical induction in limb morphogenesis: the role of growth-generated strains and pressuresGoogle Scholar
  36. 36.
    Iber D, Tanaka S, Fried P, Germann P, Menshykau D (2014) Simulating tissue morphogenesis and signaling. In: Nelson CM (ed) Tissue morphogenesis: methods and protocols. Springer, New York, pp 323–338Google Scholar
  37. 37.
    Iber D, Menshykau D (2013) The control of branching morphogenesis. Open Biol 3(9):130088PubMedPubMedCentralGoogle Scholar
  38. 38.
    Menshykau D, Iber D (2013) Kidney branching morphogenesis under the control of a ligan-receptor-based Turing mechanism. Phys Biol 10(4):046003PubMedGoogle Scholar
  39. 39.
    Dillon R, Gadgil C, Othmer HG (2003) Short-and long-range effects of sonic hedgehog in limb development. Proc Natl Acad Sci 100(18):10152–10157Google Scholar
  40. 40.
    Bittig T, Wartlick O, Kicheva A, González-Gaitán M, Jülicher F (2008) Dynamics of anisotropic tissue growth. New J Phys 10(6):063001Google Scholar
  41. 41.
    Tanaka S, Iber D (2013) Inter-dependent tissue growth and Turing patterning in a model for long bone development. Phys Biol 10(5):056009PubMedGoogle Scholar
  42. 42.
    Fried P, Sánchez-Aragón M, Aguilar-Hidalgo D, Lehtinen B, Casares F, Iber D (2016) A model of the spatio-temporal dynamics of drosophila eye disc development. PLoS Comput Biol 12(9)PubMedPubMedCentralGoogle Scholar
  43. 43.
    Boehm B, Westerberg H, Lesnicar-Pucko G, Raja S, Rautschka M, Cotterell J, Swoger J, Sharpe J (2010) The role of spatially controlled cell proliferation in limb bud morphogenesis. PLoS Biol 8(7):e1000420PubMedPubMedCentralGoogle Scholar
  44. 44.
    Forgacs G (1998) Surface tension and viscoelastic properties of embryonic tissues depend on the cytoskeleton. Biol Bull 194:328–329PubMedGoogle Scholar
  45. 45.
    Foty RA, Forgacs G, Pfleger CM, Steinberg MS (1994) Liquid properties of embryonic tissues: measurement of interfacial tensions. Phys Rev Lett 72(14):2298–2301PubMedGoogle Scholar
  46. 46.
    Marmottant P, Mgharbel A, Käfer J, Audren B, Rieu JP, Vial JC, van der Sanden B, Mareé AFM, Graner F, Delanoë-Ayari H (2001) The role of fluctuations and stress on the effective viscosity of cell aggregates. Proc Natl Acad Sci USA 106(41):17271–17275Google Scholar
  47. 47.
    Dillon RH, Othmer HG (1999) A mathematical model for outgrowth and spatial patterning of the vertebrate limb bud. J Theor Biol 197:295–330PubMedGoogle Scholar
  48. 48.
    Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New YorkGoogle Scholar
  49. 49.
    Taber LA (2004) Nonlinear theory of elasticity: applications in biomechanics. World Scientific, SingaporeGoogle Scholar
  50. 50.
    Ciarlet PG (1988) Mathematical elasticity volume 1: three-dimensional elasticity. Elsevier, AmsterdamGoogle Scholar
  51. 51.
    Holzapfel G (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, ChichesterGoogle Scholar
  52. 52.
    Peters MD, Iber D (2017) Simulating organogenesis in COMSOL: tissue mechanics. arXiv:1710.00553v2Google Scholar
  53. 53.
    Meyer-Hermann ME, Maini PK, Iber D (2006) An analysis of b cell selection mechanisms in germinal centers. Math Med Biol 23(3):255–277PubMedGoogle Scholar
  54. 54.
    Merks RMH, Koolwijk P (2009) Modeling morphogenesis in silico and in vitro : towards quantitative, predictive, cell-based modeling. Math Model Nat Phenom 4(4):149–171Google Scholar
  55. 55.
    Tanaka S (2015) Simulation frameworks for morphogenetic problems. Computation 3(2):197–221Google Scholar
  56. 56.
    Van Liedekerke P, Palm MM, Jagiella N, Drasdo D (2015) Simulating tissue mechanics with agent-based models: concepts, perspectives and some novel results. Comput Part Mech 2(4):401–444Google Scholar
  57. 57.
    Ising E (1925) Beitrag zur Theorie des Ferromagnetismus. Z Phys 31(1):253–258Google Scholar
  58. 58.
    Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092Google Scholar
  59. 59.
    Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 69(13):2013–2016PubMedGoogle Scholar
  60. 60.
    Hirashima T, Iwasa Y, Morishita Y (2009) Dynamic modeling of branching morphogenesis of ureteric bud in early kidney development. J Theor Biol 259(1):58–66PubMedGoogle Scholar
  61. 61.
    Hester SD, Belmonte JM, Gens JS, Clendenon SG, Glazier JA (2011) A multi-cell, multi-scale model of vertebrate segmentation and somite formation. PLoS Comput Biol 7(10):e1002155PubMedPubMedCentralGoogle Scholar
  62. 62.
    Poplawski NJ, Swat M, Gens JS, Glazier JA (2007) Adhesion between cells, diffusion of growth factors, and elasticity of the AER produce the paddle shape of the chick limb. Physica A 373:521–532PubMedGoogle Scholar
  63. 63.
    Swat MH, Thomas GL, Belmonte JM, Shirinifard A, Hmeljak D, Glazier JA (2012) Multi-scale modeling of tissues using CompuCell3D. Methods Cell Biol 110:325–366Google Scholar
  64. 64.
    Hoehme S, Drasdo D (2010) A cell-based simulation software for multi-cellular systems. Bioinformatics 26(20):2641–2642PubMedPubMedCentralGoogle Scholar
  65. 65.
    Honda H, Eguchi G (1980) How much does the cell boundary contract in a monolayered cell sheet? J Theor Biol 84(3):575–588PubMedGoogle Scholar
  66. 66.
    Weliky M, Oster G (1990) The mechanical basis of cell rearrangement. I. Epithelial morphogenesis during Fundulus epiboly. Development 109(2):373–386Google Scholar
  67. 67.
    Nagai T, Honda H (2001) A dynamic cell model for the formation of epithelial tissues. Philos Mag Part B 81(7):699–719Google Scholar
  68. 68.
    Fletcher AG, Osborne JM, Maini PK, Gavaghan DJ (2013) Implementing vertex dynamics models of cell populations in biology within a consistent computational framework. Prog Biophys Mol Biol 113(2):299–326PubMedGoogle Scholar
  69. 69.
    Fletcher AG, Osterfield M, Baker RE, Shvartsman SY (2014) Vertex models of epithelial morphogenesis. Biophys J 106(11):2291–2304PubMedPubMedCentralGoogle Scholar
  70. 70.
    Pitt-Francis J, Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Fletcher AG, Mirams GR, Murray P, Osborne JM, Walter A, Chapman, S.J., Garny A, van Leeuwen IMM., Maini PK, Rodríguez B, Waters SL, Whiteley JP, Byrne HM, Gavaghan DJ (2009) Chaste: a test-driven approach to software development for biological modelling. Comput Phys Commun 180(12):2452–2471Google Scholar
  71. 71.
    Mirams GR, Arthurs CJ, Bernabeu MO, Bordas R, Cooper J, Corrias, A., Davit Y, Dunn SJ, Fletcher AG, Harvey DG, Marsh ME, Osborne JM, Pathmanathan P, Pitt-Francis J, Southern J, Zemzemi N, Gavaghan DJ (2013) Chaste: an open source C++ library for computational physiology and biology. PLoS Comput Biol 9(3):e1002970PubMedPubMedCentralGoogle Scholar
  72. 72.
    Rejniak KA (2007) An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. J Theor Biol 247(1):186–204PubMedGoogle Scholar
  73. 73.
    Tanaka S, Sichau D, Iber D (2015) LBIBCell: a cell-based simulation environment for morphogenetic problems. Bioinformatics 31(14):2340–2347PubMedGoogle Scholar
  74. 74.
    Eymard R, Gallouët T, Herbin R (2000) Finite volume methods. In: Solution of equation in \( {\mathrm{\mathbb{R}}}^n \) (Part 3), techniques of scientific computing (Part 3). Volume 7 of handbook of numerical analysis. Elsevier, New York, pp 713–1018Google Scholar
  75. 75.
    Braess D (2007) Finite elements: theory, fast solvers, and applications in solid mechanics, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  76. 76.
    Courant R (1943) Variational methods for the solution of problems of equilibrium and vibrations. Bull Am Math Soc 49(1):1–23Google Scholar
  77. 77.
    Brenner S, Scott LR (2008) The mathematical theory of finite element methods. Texts in applied mathematics. Springer, New YorkGoogle Scholar
  78. 78.
    Szabo BA, Babuška I (1991) Finite element analysis. Wiley, ChichesterGoogle Scholar
  79. 79.
    Zienkiewicz O, Taylor R, Zhu JZ (2013) The finite element method: its basis and fundamentals, 7th edn. Butterworth-Heinemann, OxfordGoogle Scholar
  80. 80.
    Gander MJ, Wanner G (2012) From Euler, Ritz, and Galerkin to modern computing. SIAM Rev 54(4):627–666Google Scholar
  81. 81.
    Gelfand IM, Fomin SV (1963) Calculus of variations. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  82. 82.
    Donea J, Huerta A, Ponthot J, Rodríguez-Ferran A (2004) Arbitrary Lagrangian–Eulerian methods. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics. Wiley, HobokenGoogle Scholar
  83. 83.
    Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J Comput Phys 14(3):227–253Google Scholar
  84. 84.
    MacDonald G, Mackenzie J, Nolan M, Insall R (2016) A computational method for the coupled solution of reaction-diffusion equations on evolving domains and manifolds: application to a model of cell migration and chemotaxis. J Comput Phys 309:207–226PubMedPubMedCentralGoogle Scholar
  85. 85.
    Karimaddini Z, Unal E, Menshykau D, Iber D (2014) Simulating organogenesis in COMSOL: image-based modeling. arXiv:1610.09189v1Google Scholar
  86. 86.
    Menshykau D, Iber D (2012) Simulation organogenesis in COMSOL: deforming and interacting domains. arXiv:1210.0810Google Scholar
  87. 87.
    Kockelkoren J, Levine H, Rappel WJ (2003) Computational approach for modeling intra- and extracellular dynamics. Phys Rev E Stat Nonlin Soft Matter Phys 68(3–2)Google Scholar
  88. 88.
    Li X, Lowengrub J, Rätz A, Voigt A (2009) Solving PDEs in complex geometries: a diffuse domain approach. Commun Math Sci 7(1):81–107Google Scholar
  89. 89.
    Lervåg KY, Lowengrub J (2014) Analysis of the diffuse-domain method for solving PDEs in complex geometries. arXiv:1407.7480v3Google Scholar
  90. 90.
    Lowengrub J, Allard J, Aland S (2016) Numerical simulation of endocytosis: viscous flow driven by membranes with non-uniformly distributed curvature-inducing molecules. J Comput Phys 309:112–128PubMedPubMedCentralGoogle Scholar
  91. 91.
    Wittwer LD, Croce R, Aland S, Iber D (2016) Simulating organogenesis in COMSOL: phase-field based simulations of embryonic lung branching morphogenesis. arXiv:1610.09189v1Google Scholar
  92. 92.
    Aland S (2012) Modelling of two-phase flow with surface active particles. PhD thesis, Technische Universität DresdenGoogle Scholar
  93. 93.
    Eck C, Garcke H, Knabner P (2011) Mathematische Modellierung. Springer, BerlinGoogle Scholar
  94. 94.
    Folch R, Casademunt J, Hernández-Machado A, Ramírez-Piscina L (1999) Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 60(2-B):1724–1733Google Scholar
  95. 95.
    Aland S, Landsberg C, Müller R, Stenger F, Bobeth M, Langheinrich AC, Voigt A (2014) Adaptive diffuse domain approach for calculating mechanically induced deformation of trabecular bone. Comput Methods Biomech Biomed Engin 17(1):31–38PubMedGoogle Scholar
  96. 96.
    Teigen KE, Li X, Lowengrub J, Wang F, Voigt A (2009) A diffuse-interface approach for modeling transport, diffusion and adsorption/desorption of material quantities on a deformable interface. Commun Math Sci 4(7):1009–1037Google Scholar
  97. 97.
    Aland S, Lowengrub J, Voigt A (2011) A continuum model of colloid-stabilized interfaces. Phys Fluids 23:062103Google Scholar
  98. 98.
    Teigen KE, Song P, Lowengrub J, Voigt A (2011) A diffuse-interface method for two-phase flows with soluble surfactants. J Comput Phys 230(2):375–393Google Scholar
  99. 99.
    Wittwer LD, Peters M, Aland S, Iber D (2017) Simulating organogenesis in COMSOL: comparison of methods for simulating branching morphogenesis. arXiv:1710.02876v1Google Scholar
  100. 100.
    Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier-Stokes equation. Phys Rev Lett 56(14):1505–1508PubMedGoogle Scholar
  101. 101.
    Frouzakis CE (2011) Lattice Boltzmann methods for reactive and other flows. In: Echekki T, Mastorakos E (eds) Turbulent combustion modeling, fluid mechanics and its applications. Springer Science+Business Media, BerlinGoogle Scholar
  102. 102.
    McNamara GR, Zanetti G (1988) Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett 61(20):2332–2335PubMedGoogle Scholar
  103. 103.
    Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice boltzmann models - an introduction. Springer, BerlinGoogle Scholar
  104. 104.
    Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364Google Scholar
  105. 105.
    He X, Luo L (1997) A priori derivation of the lattice Boltzmann equation. Phys Rev E 55(6)Google Scholar
  106. 106.
    Peskin C (2002) The immersed boundary method. Acta Numer 11:479–517Google Scholar
  107. 107.
    Feng ZG, Michaelides EE (2004) The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems. J Comput Phys 195(2):602–628Google Scholar
  108. 108.
    Zhang J, Johnson PC, Popel AS (2007) An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Phys Biol 4(4):285–295PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Michael D. Multerer
    • 1
  • Lucas D. Wittwer
    • 1
  • Anna Stopka
    • 1
  • Diana Barac
    • 1
  • Christine Lang
    • 1
  • Dagmar Iber
    • 1
  1. 1.Department of Biosystems Science and EngineeringETH ZurichBaselSwitzerland

Personalised recommendations