Advertisement

13C Tracer Analysis and Metabolomics in 3D Cultured Cancer Cells

  • Marit van Gorsel
  • Ilaria Elia
  • Sarah-Maria Fendt
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1862)

Abstract

Metabolomics and 13C tracer analysis are state-of-the-art techniques that allow determining the concentration of metabolites and the activity of metabolic pathways, respectively. Three dimensional (3D) cultures of cancer cells constitute an enriched in vitro environment that can be used to assay anchorage-independent growth, spheroid formation, and extracellular matrix production by (cancer) cells. Here, we describe how to perform metabolomics and 13C tracer analysis in 3D cultures of cancer cells.

Key words

Spheroids  3D cell culture Metabolomics 13C tracing  GC-MS LC-MS  Cancer metabolism 

Notes

Acknowledgments

MvG is supported by the Emmanuel van der Schueren grant from Kom op tegen Kanker (Stand up to Cancer), the Flemish cancer society. S-MF acknowledges funding from the European Research Council under the ERC Consolidator Grant Agreement n. 771486–MetaRegulation; Marie Curie—CIG, FWO—Odysseus II, FWO—Research Grants/Projects, Eugène Yourassowsky Schenking, and KU Leuven—Methusalem Co-Funding. We would like to acknowledge http://www.somersault1824.com for image elements used in Fig. 1 (Creative Commons license CC BY-NC-SA 4.0).

References

  1. 1.
    Taylor MW (2014) A history of cell culture. In: Viruses and man: a history of interactions. Springer International Publishing, Cham, pp 41–52. https://doi.org/10.1007/978-3-319-07758-1_3 CrossRefGoogle Scholar
  2. 2.
    Sasai Y (2013) Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell 12(5):520–530. https://doi.org/10.1016/j.stem.2013.04.009 CrossRefPubMedGoogle Scholar
  3. 3.
    Kim YH, Choi SH, D'Avanzo C et al (2015) A 3D human neural cell culture system for modeling Alzheimer's disease. Nat Protoc 10(7):985–1006. https://doi.org/10.1038/nprot.2015.065 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mori S, Chang JT, Andrechek ER et al (2009) Anchorage-independent cell growth signature identifies tumors with metastatic potential. Oncogene 28(31):2796–2805. https://doi.org/10.1038/onc.2009.139 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fennema E, Rivron N, Rouwkema J et al (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31(2):108–115. https://doi.org/10.1016/j.tibtech.2012.12.003 CrossRefPubMedGoogle Scholar
  6. 6.
    Fan TW-M, El-Amouri SS, Macedo JKA, Wang QJ, Song H, Cassel T, Lane AN (2018) Stable isotope-resolved metabolomics shows metabolic resistance to anti-cancer selenite in 3D spheroids versus 2D cell cultures. Metabolites 8(3):40. https://doi.org/10.3390/metabo8030040 CrossRefGoogle Scholar
  7. 7.
    Yue D, Zhang Z, Li J et al (2015) Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer. Exp Cell Res 336(1):141–149. https://doi.org/10.1016/j.yexcr.2015.06.007 CrossRefPubMedGoogle Scholar
  8. 8.
    Elia I, Broekaert D, Christen S et al (2017) Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun 8:15267. https://doi.org/10.1038/ncomms15267 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lorendeau D, Christen S, Rinaldi G et al (2015) Metabolic control of signaling pathways and metabolic auto-regulation. Biol Cell 107(8):251–272. https://doi.org/10.1111/boc.201500015 CrossRefPubMedGoogle Scholar
  10. 10.
    Rinaldi G, Rossi M, Fendt S-M (2017) Metabolic interactions in cancer: cellular metabolism at the interface between the microenvironment, the cancer cell phenotype and the epigenetic landscape. WIREs Syst Biol Med 10:e1397. https://doi.org/10.1002/wsbm.1397 CrossRefGoogle Scholar
  11. 11.
    Elia I, Schmieder R, Christen S et al (2016) Organ-specific cancer metabolism and its potential for therapy. Handb Exp Pharmacol 233:321–353. https://doi.org/10.1007/164_2015_10 CrossRefPubMedGoogle Scholar
  12. 12.
    Fendt S-M (2017) Is there a therapeutic window for metabolism-based Cancer therapies? Front Endocrinol 8:150. https://doi.org/10.3389/fendo.2017.00150 CrossRefGoogle Scholar
  13. 13.
    Vander Heiden MG, DeBerardinis RJ (2017) Understanding the intersections between metabolism and Cancer biology. Cell 168(4):657–669. https://doi.org/10.1016/j.cell.2016.12.039 CrossRefPubMedGoogle Scholar
  14. 14.
    Buescher JM, Antoniewicz MR, Boros LG et al (2015) A roadmap for interpreting (13)C metabolite labeling patterns from cells. Curr Opin Biotechnol 34:189–201. https://doi.org/10.1016/j.copbio.2015.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jiang L, Shestov AA, Swain P et al (2016) Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 532(7598):255–258. https://doi.org/10.1038/nature17393 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Elia I, Doglioni G, & Fendt S-M (2018) Metabolic hallmarks of metastasis formation. Trends Cell Biol. Epub ahead of print, https://www.cell.com/trends/cell-biology/fulltext/S0962-8924(18)30065-5
  17. 17.
    Teoh ST, Ogrodzinski MP, Ross C, Hunter KW, Lunt SY (2018) Sialic acid metabolism: a key player in breast cancer metastasis revealed by metabolomics. Front Oncol 8:174. https://doi.org/10.3389/fonc.2018.00174 https://www.frontiersin.org/articles/10.3389/fonc.2018.00174/full CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kerr E, Gaude E, Turrell F et al (2016) Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities. Nature 531(7592):110–113. https://doi.org/10.1038/nature16967 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Christen S, Lorendeau D, Schmieder R et al (2016) Breast cancer-derived lung metastasis show increased pyruvate carboxylase-dependent anaplerosis. Cell Rep 17(3):837–848CrossRefGoogle Scholar
  20. 20.
    Elia I, Fendt S-M (2016) In vivo cancer metabolism is defined by the nutrient microenvironment. Translational Cancer Research 5:S1284–S1287CrossRefGoogle Scholar
  21. 21.
    Davidson SM, Papagiannakopoulos T, Olenchock BA et al (2016) Environment impacts the metabolic dependencies of Ras-driven non-small cell lung Cancer. Cell Metab 23(3):517–528. https://doi.org/10.1016/j.cmet.2016.01.007 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lorendeau D, Rinaldi G, Boon R et al (2017) Dual loss of succinate dehydrogenase (SDH) and complex I activity is necessary to recapitulate the metabolic phenotype of SDH mutant tumors. Metab Eng 43:187–197. https://doi.org/10.1016/j.ymben.2016.11.005 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Marit van Gorsel
    • 1
    • 2
  • Ilaria Elia
    • 1
    • 2
  • Sarah-Maria Fendt
    • 3
  1. 1.Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer BiologyVIBLeuvenBelgium
  2. 2.Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, Leuven Cancer Institute (LKI)KU LeuvenLeuvenBelgium
  3. 3.Laboratory of Cellular Metabolism and Metabolic Regulation, Department of OncologyVIB-KU Leuven Center for Cancer BiologyLeuvenBelgium

Personalised recommendations