Skip to main content

Assessing the Impact of the Nutrient Microenvironment on the Metabolism of Effector CD8+ T Cells

  • Protocol
  • First Online:
Metabolic Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1862))

Abstract

Immune cell function is tightly regulated by cellular metabolism, which in turn is strongly linked to the nutrient availability in the microenvironment surrounding the cells. This link is critical for effector CD8+ T cells which, after activation, must migrate from nutrient-rich environments into nutrient-scarce regions such as the tumor microenvironment. Assessing how nutrient availability modulates the metabolism of effector CD8+ T cells is thus key for understanding how harsh environments may impair their proliferation and effector function. Here, we describe an approach to systematically study the impact of the nutrient microenvironment on the metabolism of effector CD8+ T cells, based on performing stable 13C isotope labeling measurements on in vitro-differentiated murine effector CD8+ T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parham P (2014) The immune system. Garland Science, New York, NY

    Book  Google Scholar 

  2. Pearce EJ, Pearce EL (2017) Driving immunity: all roads lead to metabolism. Nat Rev Immunol 18(2):81–82

    Article  Google Scholar 

  3. Loftus RM, Finlay DK (2016) Immunometabolism: cellular metabolism turns immune regulator. J Biol Chem 291(1):1–10

    Article  CAS  Google Scholar 

  4. O’Neill LAJ, Kishton RJ, Rathmell J (2016) A guide to immunometabolism for immunologists. Nat Rev Immunol 16(9):553–565

    Article  Google Scholar 

  5. Buck MD, Sowell RT, Kaech SM et al (2017) Metabolic instruction of immunity. Cell 169(4):570–586

    Article  CAS  Google Scholar 

  6. Wang R, Green DR (2012) Metabolic reprogramming and metabolic dependency in T cells. Immunol Rev 249(1):14–26

    Article  CAS  Google Scholar 

  7. Pearce EL, Poffenberger MC, Chang CH et al (2013) Fueling immunity: insights into metabolism and lymphocyte function. Science 342(6155):1242454

    Article  Google Scholar 

  8. Buck MD, O’Sullivan D, Pearce EL (2015) T cell metabolism drives immunity. J Exp Med 212(9):1345–1360

    Article  CAS  Google Scholar 

  9. Chang CH, Curtis JD, Maggi LB et al (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153(6):1239–1251

    Article  CAS  Google Scholar 

  10. Renner K, Singer K, Koehl GE et al (2017) Metabolic hallmarks of tumor and immune cells in the tumor microenvironment. Front Immunol 8(8):1–11

    Google Scholar 

  11. Lunt SY, Fendt S-M (2018) Metabolism – a cornerstone of cancer initiation, progression, immune evasion and treatment response. Curr Opin Syst Biol 8:67–72

    Article  Google Scholar 

  12. Cham CM, Driessens G, O’Keefe JP et al (2008) Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur J Immunol 38(9):2438–2450

    Article  CAS  Google Scholar 

  13. Chang CH, Qiu J, O’Sullivan D et al (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162(6):1229–1241

    Article  CAS  Google Scholar 

  14. Geiger R, Rieckmann JC, Wolf T et al (2016) L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167(3):829–842.e13

    Article  CAS  Google Scholar 

  15. Ma EH, Bantug G, Griss T et al (2017) Serine is an essential metabolite for effector T cell expansion. Cell Metab 25:1–13

    Article  Google Scholar 

  16. Fischer K, Hoffmann P, Voelkl S et al (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109(9):3812–3819

    Article  CAS  Google Scholar 

  17. Pilon-Thomas S, Kodumudi KN, El-Kenawi AE et al (2016) Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res 76(6):1381–1390

    Article  CAS  Google Scholar 

  18. Kalderon B, Gopher A, Lapidot A (1987) A quantitative analysis of the metabolic pathways of hepatic glucose synthesis in vivo with 13C-labeled substrates. FEBS Lett 213(1):209–214

    Article  CAS  Google Scholar 

  19. Katz J, Lee WN, Wals PA et al (1989) Studies of glycogen synthesis and the krebs cycle by mass isotopomer analysis with [U-13C]glucose in rats. J Biol Chem 264(22):12994–13004

    CAS  PubMed  Google Scholar 

  20. Mueller D, Heinzle E (2013) Stable isotope-assisted metabolomics to detect metabolic flux changes in mammalian cell cultures. Curr Opin Biotechnol 24(1):54–59

    Article  CAS  Google Scholar 

  21. Buescher JM, Antoniewicz MR, Boros LG et al (2015) A roadmap for interpreting 13C metabolite labeling patterns from cells. Curr Opin Biotechnol 34:189–201

    Article  CAS  Google Scholar 

  22. Wittmann C, Heinzle E (1999) Mass spectrometry for metabolic flux analysis. Biotechnol Bioeng 62(6):739–750

    Article  CAS  Google Scholar 

  23. Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62

    Article  Google Scholar 

  24. Niedenführ S, Wiechert W, Nöh K (2015) How to measure metabolic fluxes: a taxonomic guide for 13C fluxomics. Curr Opin Biotechnol 34:82–90

    Article  Google Scholar 

  25. Tardito S, Oudin A, Ahmed SU et al (2015) Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol 17(12):1556–1568

    Article  CAS  Google Scholar 

  26. Elia I, Broekaert D, Christen S et al (2017) Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun 8:15267

    Article  Google Scholar 

  27. Christen S, Lorendeau D, Schmieder R et al (2016) Breast cancer-derived lung metastases show increased pyruvate carboxylase-dependent anaplerosis. Cell Rep 17(3):837–848

    Article  CAS  Google Scholar 

  28. Lorendeau D, Rinaldi G, Boon R et al (2017) Dual loss of succinate dehydrogenase (SDH) and complex I activity is necessary to recapitulate the metabolic phenotype of SDH mutant tumors. Metab Eng 43(B):187–197

    Article  CAS  Google Scholar 

  29. Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS (1986) Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci U S A 83(8):2496–2500

    Article  CAS  Google Scholar 

Download references

Acknowledgments

JFG is supported by an FWO (Fonds voor Wetenschappelijk Onderzoek–Vlaanderen, Research Foundation–Flanders) Postdoctoral Fellowship. S-MF acknowledges funding from the European Research Council under the ERC Consolidator Grant Agreement no. 771486 – MetaRegulation, Marie Curie – CIG, FWO – Odysseus II, FWO – Research Grants/Projects, Eugène Yourassowsky Schenking, and KU Leuven – Methusalem Co-Funding. We would like to acknowledge http://www.somersault1824.com for image elements used in Fig. 1 (Creative Commons license CC BY-NC-SA 4.0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah-Maria Fendt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fernández-García, J., Fendt, SM. (2019). Assessing the Impact of the Nutrient Microenvironment on the Metabolism of Effector CD8+ T Cells. In: Fendt, SM., Lunt, S. (eds) Metabolic Signaling. Methods in Molecular Biology, vol 1862. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8769-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8769-6_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8768-9

  • Online ISBN: 978-1-4939-8769-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics