Advertisement

Experimental Analysis of Imprinted Mouse X-Chromosome Inactivation

  • Marissa Cloutier
  • Clair Harris
  • Srimonta Gayen
  • Emily Maclary
  • Sundeep Kalantry
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1861)

Abstract

X-chromosome inactivation is a dosage compensation mechanism that equalizes X-linked gene expression between male and female mammals through the transcriptional silencing of most genes on one of the two X-chromosomes in females. With a few key exceptions, once the X-chromosome is inactivated replicated copies of that X-chromosome are maintained as inactive in all descendant cells. X-inactivation is therefore a paradigm of epigenetic inheritance. Imprinted X-inactivation is a specialized form of X-inactivation that results in the silencing of the paternally derived X-chromosome. Due to its parent-of-origin-specific pattern of inactivation, imprinted X-inactivation is a model of mitotic as well as meiotic, i.e., transgenerational, epigenetic inheritance. All cells of the early mouse embryo undergo imprinted X-inactivation, a pattern that is subsequently maintained in extraembryonic cell types in vivo and in vitro. Here, we describe both high- and low-throughput approaches to interrogate imprinted X-inactivation in the mouse embryo as well in cultured extraembryonic stem cells.

Key words

X-chromosome inactivation Allele-specific gene expression analyses Preimplantation mouse embryogenesis Trophoblast stem cells (TSCs) Extraembryonic endoderm (XEN) stem cells 

Notes

Acknowledgments

This work was funded by an NIH training grant: Michigan Predoctoral Training in Genetics (T32GM007544) to M.C.; NIH National Research Service Award #5-T32-GM07544 from the National Institute of General Medicine Sciences to E.M.; an NIH Director’s New Innovator Award (DP2-OD-008646-01) to S.K.; a March of Dimes Basil O’Connor Starter Scholar Research Award (5-FY12-119); and the University of Michigan Endowment for Basic Sciences.

References

  1. 1.
    Huynh KD, Lee JT (2003) Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos. Nature 426(6968):857–862CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E (2004) Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303(5658):644–649.  https://doi.org/10.1126/science.1092727CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mak W, Nesterova TB, de Napoles M, Appanah R, Yamanaka S, Otte AP, Brockdorff N (2004) Reactivation of the paternal X chromosome in early mouse embryos. Science 303(5658):666–669CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Takagi N, Sasaki M (1975) Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256(5519):640–642CrossRefPubMedCentralGoogle Scholar
  5. 5.
    West JD, Frels WI, Chapman VM, Papaioannou VE (1977) Preferential expression of the maternally derived X chromosome in the mouse yolk sac. Cell 12(4):873–882CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Harper MI, Fosten M, Monk M (1982) Preferential paternal X inactivation in extraembryonic tissues of early mouse embryos. J Embryol Exp Morphol 67:127–135PubMedPubMedCentralGoogle Scholar
  7. 7.
    Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373CrossRefGoogle Scholar
  8. 8.
    Maclary E, Buttigieg E, Hinten M, Gayen S, Harris C, Sarkar MK, Purushothaman S, Kalantry S (2014) Differentiation-dependent requirement of Tsix long non-coding RNA in imprinted X-chromosome inactivation. Nat Commun 5:4209.  https://doi.org/10.1038/ncomms5209CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J (1998) Promotion of trophoblast stem cell proliferation by FGF4. Science 282(5396):2072–2075CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Kunath T, Arnaud D, Uy GD, Okamoto I, Chureau C, Yamanaka Y, Heard E, Gardner RL, Avner P, Rossant J (2005) Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development 132(7):1649–1661.  https://doi.org/10.1242/dev.01715CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gayen S, Maclary E, Buttigieg E, Hinten M, Kalantry S (2015) A primary role for the Tsix lncRNA in maintaining random X-chromosome inactivation. Cell Rep 11(8):1251–1265.  https://doi.org/10.1016/j.celrep.2015.04.039CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gayen S, Maclary E, Hinten M, Kalantry S (2016) Sex-specific silencing of X-linked genes by the Xist RNA. Proc Natl Acad Sci U S A 113(3):E309–E318CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Sarkar MK, Gayen S, Kumar S, Maclary E, Buttigieg E, Hinten M, Kumari A, Harris C, Sado T, Kalantry S (2015) An Xist-activating antisense RNA required for X-chromosome inactivation. Nat Commun 6:8564.  https://doi.org/10.1038/ncomms9564CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Maclary E, Hinten M, Harris C, Sethuraman S, Gayen S, Kalantry S (2017) PRC2 represses transcribed genes on the imprinted inactive X chromosome in mice. Genome Biol 18(1):82.  https://doi.org/10.1186/s13059-017-1211-5CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Calabrese JM, Sun W, Song L, Mugford JW, Williams L, Yee D, Starmer J, Mieczkowski P, Crawford GE, Magnuson T (2012) Site-specific silencing of regulatory elements as a mechanism of X inactivation. Cell 151(5):951–963.  https://doi.org/10.1016/j.cell.2012.10.037CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, Genomes Project Analysis G (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158.  https://doi.org/10.1093/bioinformatics/btr330CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21.  https://doi.org/10.1093/bioinformatics/bts635CrossRefPubMedGoogle Scholar
  18. 18.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079.  https://doi.org/10.1093/bioinformatics/btp352CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842.  https://doi.org/10.1093/bioinformatics/btq033CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169.  https://doi.org/10.1093/bioinformatics/btu638CrossRefGoogle Scholar
  21. 21.
    Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550.  https://doi.org/10.1186/s13059-014-0550-8CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Breese MR, Liu Y (2013) NGSUtils: a software suite for analyzing and manipulating next-generation sequencing datasets. Bioinformatics 29(4):494–496.  https://doi.org/10.1093/bioinformatics/bts731CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hadjantonakis AK, Gertsenstein M, Ikawa M, Okabe M, Nagy A (1998) Non-invasive sexing of preimplantation stage mammalian embryos. Nat Genet 19(3):220–222CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Kalantry S, Magnuson T (2006) The polycomb group protein EED is dispensable for the initiation of random X-chromosome inactivation. PLoS Genet 2(5):e66.  https://doi.org/10.1371/journal.pgen.0020066CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kalantry S, Purushothaman S, Bowen RB, Starmer J, Magnuson T (2009) Evidence of Xist RNA-independent initiation of mouse imprinted X-chromosome inactivation. Nature 460:647–651.  https://doi.org/10.1038/nature08161CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rossant J (2007) Stem cells and lineage development in the mammalian blastocyst. Reprod Fertil Dev 19(1):111–118CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF (1991) A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349(6304):38–44CrossRefGoogle Scholar
  28. 28.
    Hinten M, Maclary E, Gayen S, Harris C, Kalantry S (2016) Visualizing long noncoding RNAs on chromatin. Methods Mol Biol 1402:147–164.  https://doi.org/10.1007/978-1-4939-3378-5_12CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Nagy A, Gertsenstein M, Vintersten K, Behringer RR (2003) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marissa Cloutier
    • 1
  • Clair Harris
    • 1
  • Srimonta Gayen
    • 1
  • Emily Maclary
    • 1
    • 2
  • Sundeep Kalantry
    • 1
  1. 1.Department of Human GeneticsUniversity of Michigan Medical SchoolAnn ArborUSA
  2. 2.Department of BiologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations