Advertisement

Metabolomics Analysis of Leishmania by Capillary Electrophoresis and Mass Spectrometry

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1859)

Abstract

Capillary electrophoresis coupled to mass spectrometry is an analytical platform ideal for the analysis of ionic or polar metabolites. It constitutes a perfect complement to reversed-phase liquid chromatography, offering a good alternative to polar stationary phases where reproducibility is not guaranteed. Herein, we describe a robust standardized methodology for the fingerprinting analysis of Leishmania, a taxonomic genus which comprises more than 20 protozoa species.

Key words

Fingerprinting Parasite phenotyping Polar metabolites Untargeted metabolomics 

Notes

Acknowledgment

This work has been supported by the funding from the Spanish Ministry of Economy and Competitiveness (CTQ2014-55279-R).

References

  1. 1.
    Rojo D, Canuto GAB, Castilho-Martins EA et al (2015) A multiplatform metabolomic approach to the basis of antimonial action and resistance in Leishmania infantum. PLoS One 10:1–20CrossRefGoogle Scholar
  2. 2.
    Canuto GAB, Castilho-Martins EA, Tavares MFM et al (2014) Multi-analytical platform metabolomic approach to study miltefosine mechanism of action and resistance in Leishmania. Anal Bioanal Chem 406:3459–3476CrossRefGoogle Scholar
  3. 3.
    Alves-Ferreira EVC, Toledo JS, De Oliveira AHC et al (2015) Differential gene expression and infection profiles of cutaneous and mucosal Leishmania braziliensis isolates from the same patient. PLoS Negl Trop Dis 9:1–1CrossRefGoogle Scholar
  4. 4.
    Castilho-Martins EA, Canuto GAB, Muxel SM et al (2015) Capillary electrophoresis reveals polyamine metabolism modulation in Leishmania (Leishmania) amazonensis wild-type and arginase-knockout mutants under arginine starvation. Electrophoresis 36:2314–2323CrossRefGoogle Scholar
  5. 5.
    Godzien J, Ciborowski M, Angulo S et al (2013) From numbers to a biological sense: how the strategy chosen for metabolomics data treatment may affect final results. A practical example based on urine fingerprints obtained by LC-MS. Electrophoresis 34:2812–2826PubMedGoogle Scholar
  6. 6.
    Korman A, Oh A, Banks D (2012) Statistical methods in metabolomics. In: Anisimova M (ed) Methods in molecular biology. Springer Science+Business Media, LLC, New York, pp 381–413Google Scholar
  7. 7.
    Steuer R, Morgenthal K, Weckwerth W et al (2007) A gentle guide to the analysis of metabolomic data. In: Weckwerth W (ed) Methods in molecular biology. Humana Press Inc., Totowa, pp 105–126Google Scholar
  8. 8.
    Vinaixa M, Schymanski EL, Neumann S et al (2016) Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. TrAC - Trends Anal Chem 78:23–35CrossRefGoogle Scholar
  9. 9.
    Gil de la Fuente A, Grace Armitage E, Otero A, et al (2017), Differentiating signals to make biological sense – a guide through databases for MS-based non-targeted metabolomicsGoogle Scholar
  10. 10.
    Salek RM, Steinbeck C, Viant MR et al (2013) The role of reporting standards for metabolite annotation and identification in metabolomic studies. Gigascience 2Google Scholar
  11. 11.
    Godzien J, Armitage EG, Angulo S et al (2015) In-source fragmentation and correlation analysis as tools for metabolite identification exemplified with CE-TOF untargeted metabolomics. Electrophoresis 36:2188–2195CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Metabolómica y Bioanállisis (CEMBIO), Facultad de FarmaciaUniversidad CEU San Pablo, Campus MontepríncipeMadridSpain

Personalised recommendations