Early Epigenetic Markers for Precision Medicine

  • Ramona G. Dumitrescu
Part of the Methods in Molecular Biology book series (MIMB, volume 1856)


Over the last years, epigenetic changes, including DNA methylation and histone modifications detected in early tumorigenesis and cancer progression, have been proposed as biomarkers for cancer detection, tumor prognosis, and prediction to treatment response. Importantly for the clinical use of DNA methylation biomarkers, specific methylation signatures can be detected in many body fluids including serum/plasma samples. Several of these potential epigenetic biomarkers detected in women’s cancers, colorectal cancers, prostate, pancreatic, gastric, and lung cancers are discussed. Studies conducted in breast cancer, for example, found that aberrant methylation detection of several genes in serum DNA and genome-wide epigenetic change could be used for early breast cancer diagnosis and prediction of breast cancer risk. In colorectal cancers, numerous studies have been conducted to identify specific methylation markers important for CRC detection and in fact clinical assays evaluating the methylation status of SEPT19 gene and vimentin, became commercially available. Furthermore, some epigenetic changes detected in gastric washes have been suggested as potential circulating noninvasive biomarkers for the early detection of gastric cancers. For the early detection of prostate cancer, few epigenetic markers have shown a better sensitivity and specificity than serum PSA, indicating that the inclusion of these markers together with current screening tools, could improve early diagnosis and may reduce unnecessary repeat biopsies. Similarly, in pancreatic cancers, abnormal DNA methylation of several genes including NPTX2, have been suggested as a diagnostic biomarker. Epigenetic dysregulation was also observed in several tumor suppressor genes and miRNAs in lung cancer patients, suggesting the important role of these changes in cancer initiation and progression. In conclusion, epigenetic changes detected in biological fluids could play an essential role in the early detection of several cancer types and this may have a great impact for the cancer precision medicine field.

Key words

Early epigenetic markers Women’s cancers Colorectal cancers Prostate Pancreatic Gastric and lung cancers Genome-wide methylation miRNAs Screening Precision medicine 


  1. 1.
    Rodriguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17(3):330–339Google Scholar
  2. 2.
    Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128(4):683–692Google Scholar
  3. 3.
    Wittenberger T, Sleigh S, Reisel D, Zikan M, Wahl B, Alunni-Fabbroni M, Jones A, Evans I, Koch J, Paprotka T, Lempiainen H, Rujan T, Rack B, Cibula D, Widschwendter M (2014) DNA methylation markers for early detection of women's cancer: promise and challenges. Epigenomics 6(3):311–327Google Scholar
  4. 4.
    Dietrich D (2018) DNA methylation analysis from body fluids. Methods Mol Biol 1655:239–249Google Scholar
  5. 5.
    Gormally E, Caboux E, Vineis P, Hainaut P (2007) Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance. Mutat Res 635(2–3):105–117Google Scholar
  6. 6.
    Jones A, Lechner M, Fourkala EO, Kristeleit R, Widschwendter M (2010) Emerging promise of epigenetics and DNA methylation for the diagnosis and management of women's cancers. Epigenomics 2(1):9–38Google Scholar
  7. 7.
    Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer 11(10):726–734Google Scholar
  8. 8.
    Locke WJ, Clark SJ (2012) Epigenome remodeling in breast cancer: insights from an early in vitro model of carcinogenesis. Breast Cancer Res 14(6):215Google Scholar
  9. 9.
    Hinshelwood RA, Huschtscha LI, Melki J, Stirzaker C, Abdipranoto A, Vissel B, Ravasi T, Wells CA, Hume DA, Reddel RR, Clark SJ (2007) Concordant epigenetic silencing of transforming growth factor-beta signaling pathway genes occurs early in breast carcinogenesis. Cancer Res 67(24):11517–11527Google Scholar
  10. 10.
    Locke WJ, Zotenko E, Stirzaker C, Robinson MD, Hinshelwood RA, Stone A, Reddel RR, Huschtscha LI, Clark SJ (2015) Coordinated epigenetic remodelling of transcriptional networks occurs during early breast carcinogenesis. Clin Epigenetics 7(1):52Google Scholar
  11. 11.
    Severi G, Southey MC, English DR, Jung CH, Lonie A, McLean C, Tsimiklis H, Hopper JL, Giles GG, Baglietto L (2014) Epigenome-wide methylation in DNA from peripheral blood as a marker of risk for breast cancer. Breast Cancer Res Treat 148(3):665–673Google Scholar
  12. 12.
    Tang Q, Cheng J, Cao X, Surowy H, Burwinkel B (2016) Blood-based DNA methylation as biomarker for breast cancer: a systematic review. Clin Epigenetics 8:115Google Scholar
  13. 13.
    Uehiro N, Sato F, Pu F, Tanaka S, Kawashima M, Kawaguchi K, Sugimoto M, Saji S, Toi M (2016) Circulating cell-free DNA-based epigenetic assay can detect early breast cancer. Breast Cancer Res 18(1):129Google Scholar
  14. 14.
    van Veldhoven K, Polidoro S, Baglietto L, Severi G, Sacerdote C, Panico S, Mattiello A, Palli D, Masala G, Krogh V (2015) Epigenome-wide association study reveals decreased average methylation levels years before breast cancer diagnosis. Clin Epigenetics 7:67Google Scholar
  15. 15.
    Ibanez de Caceres I, Battagli C, Esteller M, Herman JG, Dulaimi E, Edelson MI, Bergman C, Ehya H, Eisenberg BL, Cairns P (2004) Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients. Cancer Res 64(18):6476–6481Google Scholar
  16. 16.
    Fiegl H, Gattringer C, Widschwendter A, Schneitter A, Ramoni A, Sarlay D, Gaugg I, Goebel G, Müller HM, Mueller-Holzner E, Marth C, Widschwendter M (2004) Methylated DNA collected by tampons--a new tool to detect endometrial cancer. Cancer Epidemiol Biomark Prev 13(5):882–888Google Scholar
  17. 17.
    Wentzensen N, Bakkum-Gamez JN, Killian JK, Sampson J, Guido R, Glass A, Adams L, Luhn P, Brinton LA, Rush B, d'Ambrosio L, Gunja M, Yang HP, Garcia-Closas M, Lacey JV Jr, Lissowska J, Podratz K, Meltzer P, Shridhar V, Sherman M (2014) Discovery and validation of methylation markers for endometrial cancer. Int J Cancer 135(8):1860–1868Google Scholar
  18. 18.
    Bakkum-Gamez JN, Wentzensen N, Maurer MJ, Hawthorne KM, Voss JS, Kroneman TN, Famuyide AO, Clayton AC, Halling KC, Kerr SE, Cliby WA, Dowdy SC, Kipp BR, Mariani A, Oberg AL, Podratz KC, Shridhar V, Sherman ME (2015) Detection of endometrial cancer via molecular analysis of DNA collected with vaginal tampons. Gynecol Oncol 137(1):14–22Google Scholar
  19. 19.
    Wisman GB, Nijhuis ER, Hoque MO, Reesink-Peters N, Koning AJ, Volders HH, Buikema HJ, Boezen HM, Hollema H, Schuuring E, Sidransky D, van der Zee AG (2006) Assessment of gene promoter hypermethylation for detection of cervical neoplasia. Int J Cancer 119(8):1908–1914Google Scholar
  20. 20.
    Lendvai A, Johannes F, Grimm C, Eijsink JJ, Wardenaar R, Volders HH, Klip HG, Hollema H, Jansen RC, Schuuring E, Wisman GB, van der Zee AG (2012) Genome-wide methylation profiling identifies hypermethylated biomarkers in high-grade cervical intraepithelial neoplasia. Epigenetics 7(11):1268–1278Google Scholar
  21. 21.
    Wilting SM, Miok V, Jaspers A, Boon D, Sorgard H, Lando M, Snoek BC, van Wieringen WN, Meijer CJ, Lyng H, Snijders PJ, Steenbergen RD (2016) Aberrant methylation-mediated silencing of microRNAs contributes to HPV-induced anchorage independence. Oncotarget 7(28):43805–43819Google Scholar
  22. 22.
    Lorincz AT (2016) Virtues and weaknesses of DNA methylation as a test for cervical cancer prevention. Acta Cytol 60(6):501–512Google Scholar
  23. 23.
    Binefa G, Rodríguez-Moranta F, Teule A, Medina-Hayas M (2014) Colorectal cancer: from prevention to personalized medicine. World J Gastroenterol 20(22):6786–6808Google Scholar
  24. 24.
    Nosho K, Irahara N, Shima K, Kure S, Kirkner GJ, Schernhammer ES, Hazra A, Hunter DJ, Quackenbush J, Spiegelman D, Giovannucci EL, Fuchs CS, Ogino S (2008) Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One 3(11):e3698Google Scholar
  25. 25.
    Toiyama Y, Okugawa Y, Goel A (2014) DNA methylation and microRNA biomarkers for noninvasive detection of gastric and colorectal cancer. Biochem Biophys Res Commun 455(1–2):43–57Google Scholar
  26. 26.
    Hashimoto Y, Zumwalt TJ, Goel A (2016) DNA methylation patterns as noninvasive biomarkers and targets of epigenetic therapies in colorectal cancer. Epigenomics 8(5):685–703Google Scholar
  27. 27.
    Yi JM, Dhir M, Guzzetta AA, Iacobuzio-Donahue CA, Heo K, Yang KM, Suzuki H, Toyota M, Kim HM, Ahuja N (2012) DNA methylation biomarker candidates for early detection of colon cancer. Tumour Biol 33(2):363–372Google Scholar
  28. 28.
    Mahasneh A, Al-Shaheri F, Jamal E (2017) Molecular biomarkers for an early diagnosis, effective treatment and prognosis of colorectal cancer: current updates. Exp Mol Pathol 102(3):475–483Google Scholar
  29. 29.
    Galanopoulos M, Tsoukalas N, Papanikolaou IS, Tolia M, Gazouli M, Mantzaris GJ (2017) Abnormal DNA methylation as a cell-free circulating DNA biomarker for colorectal cancer detection: a review of literature. World J Gastrointest Oncol 9(4):142–152Google Scholar
  30. 30.
    Oh T, Kim N, Moon Y, Kim MS, Hoehn BD, Park CH, Kim TS, Kim NK, Chung HC, An S (2013) Genome-wide identification and validation of a novel methylation biomarker, SDC2, for blood-based detection of colorectal cancer. J Mol Diagn 15(4):498–507Google Scholar
  31. 31.
    Herbst A, Rahmig K, Stieber P, Philipp A, Jung A, Ofner A, Crispin A, Neumann J, Lamerz R, Kolligs FT (2011) Methylation of NEUROG1 in serum is a sensitive marker for the detection of early colorectal cancer. Am J Gastroenterol 106(6):1110–1118Google Scholar
  32. 32.
    Gyparaki MT, Basdra EK, Papavassiliou AG (2013) DNA methylation biomarkers as diagnostic and prognostic tools in colorectal cancer. J Mol Med (Berl) 91(11):1249–1256Google Scholar
  33. 33.
    Warren JD, Xiong W, Bunker AM, Vaughn CP, Furtado LV, Roberts WL, Fang JC, Samowitz WS, Heichman KA (2011) Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med 9:133Google Scholar
  34. 34.
    Toth K, Sipos F, Kalmar A, Patai AV, Wichmann B, Stoehr R, Golcher H, Schellerer V, Tulassay Z, Molnar B (2012) Detection of methylated SEPT9 in plasma is a reliable screening method for both left- and right-sided colon cancers. PLoS One 7(9):e46000Google Scholar
  35. 35.
    Ned RM, Melillo S, Marrone M (2011) Fecal DNA testing for colorectal cancer screening: the coloSure™ test. PLoS Curr 3:RRN1220Google Scholar
  36. 36.
    Lind GE, Danielsen SA, Ahlquist T, Merok MA, Andresen K, Skotheim RI, Hektoen M, Rognum TO, Meling GI, Hoff G, Bretthauer M, Thiis-Evensen E, Nesbakken A, Lothe RA (2011) Identification of an epigenetic biomarker panel with high sensitivity and specificity for colorectal cancer and adenomas. Mol Cancer 10:85Google Scholar
  37. 37.
    Ahlquist DA, Taylor WR, Mahoney DW, Zou H, Domanico M, Thibodeau SN, Boardman LA, Berger BM, Lidgard GP (2012) The stool DNA test is more accurate than the plasma septin 9 test in detecting colorectal neoplasia. Clin Gastroenterol Hepatol 10(3):272–7.e1Google Scholar
  38. 38.
    American Cancer Society (2015) Global facts and figures. 3rd edn. pp. 28–32. Available at: Accessed 21 Sep 2017
  39. 39.
    Liu L, Cao L, Gong B, Yu J (2015) Novel biomarkers for the identification and targeted therapy of gastric cancer. Expert Rev Gastroenterol Hepatol 9(9):1217–1226Google Scholar
  40. 40.
    Nakamura J, Tanaka T, Kitajima Y, Noshiro H, Miyazaki K (2014) Methylation-mediated gene silencing as biomarkers of gastric cancer: a review. World J Gastroenterol 20(34):11991–12006Google Scholar
  41. 41.
    Lee TL, Leung WK, Chan MW, Ng EK, Tong JH, Lo KW, Chung SC, Sung JJ, To KF (2002) Detection of gene promoter hypermethylation in the tumor and serum of patients with gastric carcinoma. Clin Cancer Res 8(6):1761–1766Google Scholar
  42. 42.
    Leung WK, To KF, Chu ES, Chan MW, Bai AH, Ng EK, Chan FK, Sung JJ (2005) Potential diagnostic and prognostic values of detecting promoter hypermethylation in the serum of patients with gastric cancer. Br J Cancer 92(12):2190–2194Google Scholar
  43. 43.
    Watanabe Y, Kim HS, Castoro RJ, Chung W, Estecio MR, Kondo K, Guo Y, Ahmed SS, Toyota M, Itoh F, Suk KT, Cho MY, Shen L, Jelinek J, Issa JP (2009) Sensitive and specific detection of early gastric cancer with DNA methylation analysis of gastric washes. Gastroenterology 136(7):2149–2158Google Scholar
  44. 44.
    Oishi Y, Watanabe Y, Yoshida Y, Sato Y, Hiraishi T, Oikawa R, Maehata T, Suzuki H, Toyota M, Niwa H, Suzuki M, Itoh F (2012) Hypermethylation of Sox17 gene is useful as a molecular diagnostic application in early gastric cancer. Tumour Biol 33(2):383–393Google Scholar
  45. 45.
    American Cancer Society (2017) Global facts and figures. 3rd edn. p. 10. Available at: Accessed 21 Sep 2017
  46. 46.
    Brait M, Banerjee M, Maldonado L, Ooki A, Loyo M, Guida E, Izumchenko E, Mangold L, Humphreys E, Rosenbaum E, Partin A, Sidransky D, Hoque MO (2017) Promoter methylation of MCAM, ERα and ERβ in serum of early stage prostate cancer patients. Oncotarget 8(9):15431–15440Google Scholar
  47. 47.
    Wu T, Giovannucci E, Welge J, Mallick P, Tang WY, Ho SM (2011) Measurement of GSTP1 promoter methylation in body fluids may complement PSA screening: a meta-analysis. Br J Cancer 105(1):65–73Google Scholar
  48. 48.
    Stewart GD, Van Neste L, Delvenne P, Delrée P, Delga A, McNeill SA, O'Donnell M, Clark J, Van Criekinge W, Bigley J, Harrison DJ (2013) Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: results of the MATLOC study. J Urol 189(3):1110–1116Google Scholar
  49. 49.
    Levenson VV, Melnikov AA (2011) The MethDet: a technology for biomarker development. Expert Rev Mol Diagn 11(8):807–812Google Scholar
  50. 50.
    Sato N, Fukushima N, Maitra A, Matsubayashi H, Yeo CJ, Cameron JL, Hruban RH, Goggins M (2003) Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res 63(13):3735–3742Google Scholar
  51. 51.
    Park JK, Ryu JK, Yoon WJ, Lee SH, Lee GY, Jeong KS, Kim YT, Yoon YB (2012) The role of quantitative NPTX2 hypermethylation as a novel serum diagnostic marker in pancreatic cancer. Pancreas 41(1):95–101Google Scholar
  52. 52.
    Shimizu H, Horii A, Sunamura M, Motoi F, Egawa S, Unno M, Fukushige S (2011) Identification of epigenetically silenced genes in human pancreatic cancer by a novel method "microarray coupled with methyl-CpG targeted transcriptional activation" (MeTA-array). Biochem Biophys Res Commun 411(1):162–167Google Scholar
  53. 53.
    Nones K, Waddell N, Song S, Patch AM, Miller D, Johns A, Wu J, Kassahn KS, Wood D, Bailey P, Fink L, Manning S, Christ AN, Nourse C, Kazakoff S, Taylor D, Leonard C, Chang DK, Jones MD, Thomas M, Watson C, Pinese M, Cowley M, Rooman I, Pajic M, Butturini G, Malpaga A, Corbo V, Crippa S, Falconi M, Zamboni G, Castelli P, Lawlor RT, Gill AJ, Scarpa A, Pearson JV, Biankin AV, Grimmond SM, APGI (2014) Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling. Int J Cancer 135(5):1110–1118Google Scholar
  54. 54.
    Liggett T, Melnikov A, Yi QL, Replogle C, Brand R, Kaul K, Talamonti M, Abrams RA, Levenson V (2010) Differential methylation of cell-free circulating DNA among patients with pancreatic cancer versus chronic pancreatitis. Cancer 116(7):1674–1680Google Scholar
  55. 55.
    American Cancer Society (2017) Cancer facts and figures 2017. p. 18. Available at: Accessed 21 Sep 2017
  56. 56.
    Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11(6):426–437Google Scholar
  57. 57.
    Tomasetti M, Amati M, Neuzil J, Santarelli L (2017) Circulating epigenetic biomarkers in lung malignancies: from early diagnosis to therapy. Lung Cancer 107:65–72Google Scholar
  58. 58.
    Vosa U, Vooder T, Kolde R, Vilo J, Metspalu A, Annilo T (2013) Meta-analysis of microRNA expression in lung cancer. Int J Cancer 132(12):2884–2893Google Scholar
  59. 59.
    Gao W, Xu J, Liu L, Shen H, Zeng H, Shu Y (2012) A systematic-analysis of predicted miR-21 targets identifies a signature for lung cancer. Biomed Pharmacother 66(1):21–28Google Scholar
  60. 60.
    Gao W, Shen H, Liu L, Xu J, Xu J, Shu Y (2011) MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol 137(4):557–566Google Scholar
  61. 61.
    Zhu W, Liu X, He J, Chen D, Hunag Y, Zhang YK (2011) Overexpression of members of the microRNA-183 family is a risk factor for lung cancer: a case control study. BMC Cancer 11:393Google Scholar
  62. 62.
    Donnem T, Fenton CG, Lonvik K, Berg T, Eklo K, Andersen S, Stenvold H, Al-Shibli K, Al-Saad S, Bremnes RM, Busund LT (2012) MicroRNA signatures in tumor tissue related to angiogenesis in non-small cell lung cancer. PLoS One 7(1):e29671Google Scholar
  63. 63.
    Joshi P, Middleton J, Jeon YJ, Garofalo M (2014) MicroRNAs in lung cancer. World J Methodol 4(2):59–72Google Scholar
  64. 64.
    Boeri M, Verri C, Conte D, Roz L, Modena P, Facchinetti F, Calabro E, Croce CM, Pastorino U, Sozzi G (2011) MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci U S A 108(9):3713–3718Google Scholar
  65. 65.
    Sozzi G, Boeri M, Rossi M, Verri C, Suatoni P, Bravi F, Roz L, Conte D, Grassi M, Sverzellati N, Marchiano A, Negri E, La Vecchia C, Pastorino U (2014) Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: a correlative MILD trial study. J Clin Oncol 32(8):768–773Google Scholar
  66. 66.
    Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M, Sültmann H, Lyko F (2007) The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67(4):1419–1423Google Scholar
  67. 67.
    Brzezianska E, Dutkowska A, Antczak A (2013) The significance of epigenetic alterations in lung carcinogenesis. Mol Biol Rep 40(1):309–325Google Scholar
  68. 68.
    Weiss G, Schlegel A, Kottwitz D, König T, Tetzner R (2017) Validation of the SHOX2/PTGER4 DNA methylation marker panel for plasma-based discrimination between patients with malignant and nonmalignant lung disease. J Thorac Oncol 12(1):77–84Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ramona G. Dumitrescu
    • 1
  1. 1.Kelly Government SolutionsBethesdaUSA

Personalised recommendations