Protein Stains and Applications

  • Pazhani Sundaram
Part of the Methods in Molecular Biology book series (MIMB, volume 1853)


Staining of proteins separated on gels provides the basis for determination of the critical properties of these biopolymers, such as their molecular weight and/or charge. Detection of proteins on gels and blots require stains. These stains vary in sensitivity, ease of use, color, stability, versatility, and specificity. This review discusses different stains and applications with details on how to use the stains, and advantages and disadvantages of each stain. It also compiles some important points to be considered in imaging and evaluation. Commonly used colorimetric and fluorescent dyes for general protein staining, and stains that detect posttranslational modification-specific detection methods are also discussed.

Key words

SDS-PAGE 2-DE Coomassie Brilliant Blue Silver nitrate Zinc staining Fluorescent stains Preelectrophoresis staining 



A small part of the salary support to Dr. Pazhani Sundaram was provided by an SBIR phase 2 grant R44 AG0 50336, from National Institute on Aging, National Institutes of Health, USA. The author thanks NIH for the above grant award. Help rendered by Omkar Gandbhir, in preparing this manuscript is gratefully acknowledged.


  1. 1.
    Steinberg TH (2009) Protein gel staining methods: an introduction and overview. Methods Enzymol 463:541–563CrossRefPubMedGoogle Scholar
  2. 2.
    Dunbar BS, Kimura H, Timmons TM (1990) Protein analysis using highresolution two-dimensional polyacrylamide gel electrophoresis. In: Deutscher MP (ed) Methods enzymology, vol 182. Academic, San Diego, CA, pp 441–459Google Scholar
  3. 3.
    Garfin DE (1990) One-dimensional gel electrophoresis. In: Deutscher MP (ed) Methods enzymology, vol 182. Academic, San Diego, CA, pp 425–441Google Scholar
  4. 4.
    Garfin DE (1990) Isoelectric focusing. In: Deutscher MP (ed) Methods enzymology, vol 182. Academic, San Diego, CA, pp 459–478Google Scholar
  5. 5.
    Merril CR (1990) Gel-staining techniques. In: Deutscher MP (ed) Methods enzymology, vol 182. Academic, San Diego, CA, pp 477–488, xxixþ894ppGoogle Scholar
  6. 6.
    Miller I, Crawford J, Gianazza E (2006) Protein stains for proteomic applications: which, when, why? Proteomics 6:5385–5408CrossRefPubMedGoogle Scholar
  7. 7.
    Patton WF (2000) A thousand points of light: the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis 21:1123–1144CrossRefPubMedGoogle Scholar
  8. 8.
    Patton WF (2002) Detection technologies in proteome analysis. J Chromatogr B 771:3–31CrossRefGoogle Scholar
  9. 9.
    Smejkal GB (2004) The Coomassie chronicles: past, present and future perspectives in polyacrylamide gel staining. Expert Rev Proteomics 1:381–387CrossRefPubMedGoogle Scholar
  10. 10.
    Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262CrossRefPubMedGoogle Scholar
  11. 11.
    Candiano G, Bruschi M, Musante L et al (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333CrossRefPubMedGoogle Scholar
  12. 12.
    Rabilloud T (1990) Mechanisms of protein silver staining in polyacrylamide gels: a 10-year synthesis. Electrophoresis 11:785–794CrossRefPubMedGoogle Scholar
  13. 13.
    Poland J, Rabilloud T, Sinha P (2005) Silver staining of 2-D gels. In: Walker JM (ed) The proteomics protocol handbook. Humana Press, Totowa, NJ, pp 215–222Google Scholar
  14. 14.
    Fernandez-Patron C (2005) Zn2þ reverse staining technique. In: Walker JM (ed) The proteomics protocol handbook. Humana Press, Totowa, NJ, pp 215–222Google Scholar
  15. 15.
    Fernandez-Patron C, Castellanos-Serra L, Hardy E et al (1998) Understanding the mechanism of the zinc-ion stains of biomacromolecules in electrophoresis gels: generalization of the reverse-staining technique. Electrophoresis 19:2398–2406CrossRefPubMedGoogle Scholar
  16. 16.
    Steinberg TH, Hart CR, Patton WF (2005) Rapid, sensitive detection of proteins in minigels with fluorescent dyes. In: Walker JM (ed) The proteomics handbook. Humana Press, Totowa, NJ, pp 215–222CrossRefGoogle Scholar
  17. 17.
    Daban JR (2001) Fluorescent labeling of proteins with Nile red and 2-methoxy-2, 4-diphenyl-3(2H)-furanone: physicochemical basis and application to the rapid staining of sodium dodecyl sulfate polyacrylamide gels and Western blots. Electrophoresis 22:874–880CrossRefPubMedGoogle Scholar
  18. 18.
    Daban JR, Bartolome S, Samso M (1991) Use of the hydrophobic probe Nile red for the fluorescent staining of protein bands in sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem 199:169–174CrossRefPubMedGoogle Scholar
  19. 19.
    Bell PJ, Karuso P (2003) Epicocconone, a novel fluorescent compound from the fungus Epicoccum nigrum. J Am Chem Soc 125:9304–9305CrossRefPubMedGoogle Scholar
  20. 20.
    Schulenberg B, Goodman TN, Aggeler R et al (2004) Characterization of dynamic and steady-state protein phosphorylation using a fluorescent phosphoprotein gel stain and mass spectrometry. Electrophoresis 15:2526–2532CrossRefGoogle Scholar
  21. 21.
    Murray J, Marusich MF, Capaldi RA et al (2004) Focused proteomics: monoclonal antibody-based isolation of the oxidative phosphorylation machinery and detection of phosphoproteins using a fluorescent phosphoprotein gel stain. Electrophoresis 15:2520–2525CrossRefGoogle Scholar
  22. 22.
    Schulenberg B, Aggeler R, Beechem JM et al (2003) Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J Biol Chem 278:27251–27255CrossRefPubMedGoogle Scholar
  23. 23.
    Steinberg TH, Agnew BJ, Gee KR et al (2003) Global quantitative phosphoprotein analysis using Multiplexed Proteomics technology. Proteomics 3:1128–1144CrossRefPubMedGoogle Scholar
  24. 24.
    Schulenberg B, Patton WF (2004) Combining microscale solution-phase isoelectric focusing with Multiplexed Proteomics dye staining to analyze protein post-translational modifications. Electrophoresis 25:2539–2544CrossRefPubMedGoogle Scholar
  25. 25.
    Hayduk EJ, Choe LH, Lee KH (2004) A two-dimensional electrophoresis map of Chinese hamster ovary cell proteins based on fluorescence staining. Electrophoresis 25:2545–2556CrossRefPubMedGoogle Scholar
  26. 26.
    Ge Y, Rajkumar L, Guzman RC et al (2004) Multiplexed fluorescence detection of phosphorylation, glycosylation, and total protein in the proteomic analysis of breast cancer refractoriness. Proteomics 4:346CrossRefGoogle Scholar
  27. 27.
    Barger BO, White RC, Pace JL et al (1976) Estimation of molecular weight by polyacrylamide gel electrophoresis using heat stable fluorophors. Anal Biochem 70:327–335CrossRefPubMedGoogle Scholar
  28. 28.
    Jackson P, Urwin VE, Mackay CD (1988) Rapid imaging, using a cooled charge-coupled-device, of fluorescent two-dimensional polyacrylamide gels produced by labelling proteins in the first-dimensional isoelectric focusing gel with the fluorophore 2-methoxy-2,4-diphenyl-3(2H)furanone. Electrophoresis 9:330–339CrossRefPubMedGoogle Scholar
  29. 29.
    Tonge R, Shaw J, Middleton B et al (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1:377–396CrossRefPubMedGoogle Scholar
  30. 30.
    Uenlue M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077CrossRefGoogle Scholar
  31. 31.
    Sitek B, Scheibe B, Jung K, Schramm A, Stuehler K (2006) Difference gel electrophoresis (DIGE): the next generation of two‐dimensional gel electrophoresis for clinical research. In: Marcus K, Stuehler K, van Hall A, Hamacher M et al (eds) Proteomics in drug research. Wiley-VCH, Weinheim, pp 33–55CrossRefGoogle Scholar
  32. 32.
    Raggiaschi R, Lorenzetto C, Diodato E et al (2006) Detection of phosphorylation patterns in rat cortical neurons by combining phosphatase treatment and DIGE technology. Proteomics 2006(6):748–756CrossRefGoogle Scholar
  33. 33.
    Gharbi S, Gaffney P, Yang A et al (2001) Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system. Mol Cell Proteomics 1:91–98CrossRefGoogle Scholar
  34. 34.
    Huber W, von Heydebreck A, Sultmann H et al (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(Suppl 1):S96–S104CrossRefPubMedGoogle Scholar
  35. 35.
    Karp NA, Kreil DP, Lilley KS (2004) Determining a significant change in protein expression with DeCyder during a pair-wise comparison using two-dimensional difference gel electrophoresis. Proteomics 4:1421–1432CrossRefPubMedGoogle Scholar
  36. 36.
    Kreil DP, Karp NA, Lilley KS (2004) DNA microarray normalization methods can remove bias from differential protein expression analysis of 2D difference gel electrophoresis results. Bioinformatics 20:2026–2034CrossRefPubMedGoogle Scholar
  37. 37.
    Fodor IK, Nelson DO, Alegria-Hartman M et al (2005) Statistical challenges in the analysis of two-dimensional difference gel electrophoresis experiments using DeCyder. Bioinformatics 21:3733–3740CrossRefPubMedGoogle Scholar
  38. 38.
    Somiari RI, Russell S, Somiari SB, Sullivan AG et al (2005) Differential in-gel electrophoresis in a high-throughput environment. In: Walker JM (ed) The proteomics handbook. Humana Press, Totowa, NJ, pp 223–237CrossRefGoogle Scholar
  39. 39.
    Greengauz-Roberts O, Stoppler H, Nomura S et al (2005) Saturation labeling with cysteine-reactive cyanine fluorescent dyes provides increased sensitivity for protein expression profiling of laser-microdissected clinical specimens. Proteomics 5:1746–1757CrossRefPubMedGoogle Scholar
  40. 40.
    Wilson KE, Marouga R, Prime JE et al (2005) Comparative proteomic analysis using samples obtained with laser microdissection and saturation dye labeling. Proteomics 5:3851–3858CrossRefPubMedGoogle Scholar
  41. 41.
    Sitek B, Luttges J, Marcus K et al (2005) Application of fluorescence difference gel electrophoresis saturation labelling for the analysis of microdissected precursor lesions of pancreatic ductal adenocarcinoma. Proteomics 5:2665–2679CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Pazhani Sundaram
    • 1
  1. 1.Recombinant Technologies LLCCheshireUSA

Personalised recommendations