Exploring Protein Conformational Diversity

  • Alexander Miguel Monzon
  • Maria Silvina Fornasari
  • Diego Javier Zea
  • Gustavo Parisi
Part of the Methods in Molecular Biology book series (MIMB, volume 1851)


The native state of proteins is composed of conformers in dynamical equilibrium. In this chapter, different issues related to conformational diversity are explored using a curated and experimentally based database called CoDNaS (Conformational Diversity in the Native State). This database is a collection of redundant structures for the same sequence. CoDNaS estimates the degree of conformational diversity using different global and local structural similarity measures. It allows the user to explore how structural differences among conformers change as a function of several structural features providing further biological information. This chapter explores the measurement of conformational diversity and its relationship with sequence divergence. Also, it discusses how proteins with high conformational diversity could affect homology modeling techniques.

Key words

Conformational diversity CoDNaS database Conformers Native state Protein dynamics Protein evolution 



Authors would like to thank Paula Benencio for helping us with manuscript proofreading.


  1. 1.
    Gerstein M, Lesk AM, Chothia C (1994) Structural mechanisms for domain movements in proteins. Biochemistry 33:6739–6749CrossRefGoogle Scholar
  2. 2.
    Gerstein M, Krebs W (1998) A database of macromolecular motions. Nucleic Acids Res 26:4280–4290CrossRefGoogle Scholar
  3. 3.
    Gu Y, Li D-W, Brüschweiler R (2015) Decoding the mobility and time scales of protein loops. J Chem Theory Comput 11:1308–1314CrossRefGoogle Scholar
  4. 4.
    Gora A, Brezovsky J, Damborsky J (2013) Gates of enzymes. Chem Rev 113:5871–5923CrossRefGoogle Scholar
  5. 5.
    Perutz MF, Bolton W, Diamond R et al (1964) Structure of haemoglobin. An X-ray examination of reduced horse haemoglobin. Nature 203:687–690CrossRefGoogle Scholar
  6. 6.
    Popovych N, Sun S, Ebright RH et al (2006) Dynamically driven protein allostery. Nat Struct Mol Biol 13:831–838CrossRefGoogle Scholar
  7. 7.
    Dunker AK, Keith Dunker A, Silman I et al (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764CrossRefGoogle Scholar
  8. 8.
    Boehr DD, McElheny D, Dyson HJ et al (2006) The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313:1638–1642CrossRefGoogle Scholar
  9. 9.
    Tsai CJ, Del Sol A, Nussinov R (2009) Protein allostery, signal transmission and dynamics: a classification scheme of allosteric mechanisms. Mol BioSyst 5:207–216CrossRefGoogle Scholar
  10. 10.
    Hilser VJ (2010) Biochemistry. An ensemble view of allostery. Science 327:653–654CrossRefGoogle Scholar
  11. 11.
    James LC, Roversi P, Tawfik DS (2003) Antibody multispecificity mediated by conformational diversity. Science 299:1362–1367CrossRefGoogle Scholar
  12. 12.
    Smock RG, Gierasch LM (2009) Sending signals dynamically. Science 324:198–203CrossRefGoogle Scholar
  13. 13.
    Yogurtcu ON, Bora Erdemli S, Nussinov R et al (2008) Restricted mobility of conserved residues in protein-protein interfaces in molecular simulations. Biophys J 94:3475–3485CrossRefGoogle Scholar
  14. 14.
    Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139CrossRefGoogle Scholar
  15. 15.
    Tokuriki N, Stricher F, Serrano L et al (2008) How protein stability and new functions trade off. PLoS Comput Biol 4:e1000002CrossRefGoogle Scholar
  16. 16.
    Zea DJ, Miguel Monzon A, Fornasari MS et al (2013) Protein conformational diversity correlates with evolutionary rate. Mol Biol Evol 30:1500–1503CrossRefGoogle Scholar
  17. 17.
    Zea DJ, Monzon AM, Gonzalez C et al (2016) Disorder transitions and conformational diversity cooperatively modulate biological function in proteins. Protein Sci 25:1138–1146CrossRefGoogle Scholar
  18. 18.
    Best RB, Lindorff-Larsen K, DePristo MA et al (2006) Relation between native ensembles and experimental structures of proteins. Proc Natl Acad Sci U S A 103:10901–10906CrossRefGoogle Scholar
  19. 19.
    Burra PV, Zhang Y, Godzik A et al (2009) Global distribution of conformational states derived from redundant models in the PDB points to non-uniqueness of the protein structure. Proc Natl Acad Sci U S A 106:10505–10510CrossRefGoogle Scholar
  20. 20.
    Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  21. 21.
    Wei G, Xi W, Nussinov R et al (2016) Protein ensembles: how does nature harness thermodynamic fluctuations for life? The diverse functional roles of conformational ensembles in the cell. Chem Rev 116:6516. Scholar
  22. 22.
    Marino-Buslje C, Monzon AM, Zea DJ et al (2017) On the dynamical incompleteness of the Protein Data Bank. Brief Bioinform.
  23. 23.
    Monzon AM, Juritz E, Fornasari MS et al (2013) CoDNaS: a database of conformational diversity in the native state of proteins. Bioinformatics 29:2512–2514CrossRefGoogle Scholar
  24. 24.
    Monzon AM, Rohr CO, Fornasari MS et al (2016) CoDNaS 2.0: a comprehensive database of protein conformational diversity in the native state. Database 2016:baw038CrossRefGoogle Scholar
  25. 25.
    Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  26. 26.
    Ortiz AR, Strauss CEM, Olmea O (2002) MAMMOTH (matching molecular models obtained from theory): an automated method for model comparison. Protein Sci 11:2606–2621CrossRefGoogle Scholar
  27. 27.
    The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169CrossRefGoogle Scholar
  28. 28.
    Sillitoe I, Lewis TE, Cuff A et al (2015) CATH: comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res 43:D376–D381CrossRefGoogle Scholar
  29. 29.
    Bairoch A (2000) The ENZYME database in 2000. Nucleic Acids Res 28:304–305CrossRefGoogle Scholar
  30. 30.
    Potenza E, Di Domenico T, Walsh I et al (2015) MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins. Nucleic Acids Res 43:D315–D320CrossRefGoogle Scholar
  31. 31.
    Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29CrossRefGoogle Scholar
  32. 32.
    Qin H, Shi J, Noberini R et al (2008) Crystal structure and NMR binding reveal that two small molecule antagonists target the high affinity ephrin-binding channel of the EphA4 receptor. J Biol Chem 283:29473–29484CrossRefGoogle Scholar
  33. 33.
    Qin H, Lim L, Song J (2012) Protein dynamics at Eph receptor-ligand interfaces as revealed by crystallography, NMR and MD simulations. BMC Biophys 5:2CrossRefGoogle Scholar
  34. 34.
    Bowden TA, Aricescu AR, Nettleship JE et al (2009) Structural plasticity of eph receptor A4 facilitates cross-class ephrin signaling. Structure 17:1386–1397CrossRefGoogle Scholar
  35. 35.
    Monzon AM, Zea DJ, Fornasari MS et al (2017) Conformational diversity analysis reveals three functional mechanisms in proteins. PLoS Comput Biol 13:1–29CrossRefGoogle Scholar
  36. 36.
    Parisi G, Zea DJ, Monzon AM et al (2015) Conformational diversity and the emergence of sequence signatures during evolution. Curr Opin Struct Biol 32:58–65CrossRefGoogle Scholar
  37. 37.
    Gutteridge A, Thornton J (2005) Conformational changes observed in enzyme crystal structures upon substrate binding. J Mol Biol 346:21–28CrossRefGoogle Scholar
  38. 38.
    Mesecar AD, Stoddard BL, Koshland DE Jr (1997) Orbital steering in the catalytic power of enzymes: small structural changes with large catalytic consequences. Science 277:202CrossRefGoogle Scholar
  39. 39.
    Koshland DE (1998) Conformational changes: how small is big enough? Nat Med 4:1112–1114CrossRefGoogle Scholar
  40. 40.
    Rashin AA, Rashin AHL, Jernigan RL (2010) Diversity of function-related conformational changes in proteins: coordinate uncertainty, fragment rigidity, and stability. Biochemistry 49:5683–5704CrossRefGoogle Scholar
  41. 41.
    Juritz E, Palopoli N, Fornasari S et al (2013) Protein conformational diversity modulates sequence divergence. Mol Biol Evol 30:79–87CrossRefGoogle Scholar
  42. 42.
    Liu Y, Bahar I (2012) Sequence evolution correlates with structural dynamics. Mol Biol Evol 29:2253–2263CrossRefGoogle Scholar
  43. 43.
    Saldaño TE, Monzon AM, Parisi G et al (2016) Evolutionary conserved positions define protein conformational diversity. PLoS Comput Biol 12:e1004775CrossRefGoogle Scholar
  44. 44.
    Jeon J, Nam H-J, Choi YS et al (2011) Molecular evolution of protein conformational changes revealed by a network of evolutionarily coupled residues. Mol Biol Evol 28:2675–2685CrossRefGoogle Scholar
  45. 45.
    Codoñer FM, Fares MA (2008) Why should we care about molecular coevolution? Evol Bioinformatics Online 4:29–38Google Scholar
  46. 46.
    de Oliveira SHP, Shi J, Deane CM (2017) Comparing co-evolution methods and their application to template-free protein structure prediction. Bioinformatics 33:373–381PubMedGoogle Scholar
  47. 47.
    Morcos F, Jana B, Hwa T et al (2013) Coevolutionary signals across protein lineages help capture multiple protein conformations. Proc Natl Acad Sci U S A 110:20533–20538CrossRefGoogle Scholar
  48. 48.
    Rodriguez-Rivas J, Marsili S, Juan D et al (2016) Conservation of coevolving protein interfaces bridges prokaryote–eukaryote homologies in the twilight zone. Proc Natl Acad Sci U S A 113:15018–15023CrossRefGoogle Scholar
  49. 49.
    Zea DJ, Monzon AM, Parisi G, et al (2018) How is structural divergence related to evolutionary information?, Molecular Phylogenetics and Evolution, Available online 25 June 2018, ISSN 1055-7903, Scholar
  50. 50.
    Sfriso P, Duran-Frigola M, Mosca R et al (2016) Residues coevolution guides the systematic identification of alternative functional conformations in proteins. Structure 24:116–126CrossRefGoogle Scholar
  51. 51.
    Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826CrossRefGoogle Scholar
  52. 52.
    Koehl P, Levitt M (2002) Sequence variations within protein families are linearly related to structural variations. J Mol Biol 2836:551–562CrossRefGoogle Scholar
  53. 53.
    Hubbard TJ, Blundell TL (1987) Comparison of solvent-inaccessible cores of homologous proteins: definitions useful for protein modelling. Protein Eng 1:159–171CrossRefGoogle Scholar
  54. 54.
    Russell RB, Barton GJ (1994) Structural features can be unconserved in proteins with similar folds. An analysis of side-chain to side-chain contacts secondary structure and accessibility. J Mol Biol 244:332. Scholar
  55. 55.
    Wen B, Lampe JN, Roberts AG et al (2005) Evolutionary plasticity of protein families: coupling between sequence and structure variation. Proteins 61:535–544CrossRefGoogle Scholar
  56. 56.
    Illergård K, Ardell DH, Elofsson A (2009) Structure is three to ten times more conserved than sequence--a study of structural response in protein cores. Proteins 77:499–508CrossRefGoogle Scholar
  57. 57.
    Monzon AM, Zea DJ, Marino-Buslje C et al (2017) Homology modeling in a dynamical world. Protein Sci 26:2195CrossRefGoogle Scholar
  58. 58.
    Sikic K, Tomic S, Carugo O (2010) Systematic comparison of crystal and NMR protein structures deposited in the protein data bank. Open Biochem J 4:83–95CrossRefGoogle Scholar
  59. 59.
    Kufareva I, Abagyan R (2012) Methods of protein structure comparison. In: Orry AJW, Abagyan R (eds) Homology modeling: methods and protocols. Humana Press, Totowa, NJ, pp 231–257Google Scholar
  60. 60.
    Siew N, Elofsson A, Rychlewski L et al (2000) MaxSub: an automated measure for the assessment of protein structure prediction quality. Bioinformatics 16:776–785CrossRefGoogle Scholar
  61. 61.
    Velankar S, Dana JM, Jacobsen J et al (2013) SIFTS: structure integration with function, taxonomy and sequences resource. Nucleic Acids Res 41:D483–D489CrossRefGoogle Scholar
  62. 62.
    Zea DJ, Anfossi D, Nielsen M et al (2016) MIToS.jl: Mutual information tools for protein sequence analysis in the Julia language. Bioinformatics 33(4):564–565Google Scholar
  63. 63.
    Zoete V, Michielin O, Karplus M (2002) Relation between sequence and structure of HIV-1 protease inhibitor complexes: a model system for the analysis of protein flexibility. J Mol Biol 315:21–52CrossRefGoogle Scholar
  64. 64.
    Hrabe T, Li Z, Sedova M et al (2016) PDBFlex: exploring flexibility in protein structures. Nucleic Acids Res 44:D423–D428CrossRefGoogle Scholar
  65. 65.
    Maguid S, Fernández-Alberti S, Parisi G et al (2006) Evolutionary conservation of protein backbone flexibility. J Mol Evol 63:448–457CrossRefGoogle Scholar
  66. 66.
    Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefGoogle Scholar
  67. 67.
    Lee RA, Razaz M, Hayward S (2003) The DynDom database of protein domain motions. Bioinformatics 19:1290–1291CrossRefGoogle Scholar
  68. 68.
    Amemiya T, Koike R, Kidera A et al (2012) PSCDB: a database for protein structural change upon ligand binding. Nucleic Acids Res 40:D554–D558CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alexander Miguel Monzon
    • 1
  • Maria Silvina Fornasari
    • 1
  • Diego Javier Zea
    • 2
  • Gustavo Parisi
    • 1
  1. 1.Departamento de Ciencia y TecnologíaUniversidad Nacional de Quilmes, CONICETBernalArgentina
  2. 2.Structural Bioinformatics Unit, Fundación Instituto Leloir, CONICETBuenos AiresArgentina

Personalised recommendations