Skip to main content

Analyzing Metabolic Pathways in Microbiomes

  • Protocol
  • First Online:
Microbiome Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1849))

Abstract

Understanding the metabolic activity of a microbial community, at both the level of the individual microbe and the whole microbiome, provides fundamental biological, biochemical, and clinical insights into the nature of the microbial community and interactions with their hosts in health and disease. Here, we discuss a method to examine the expression of metabolic pathways in microbial communities using data from metatranscriptomic next-generation sequencing data. The methodology described here encompasses enzyme function annotation, differential enzyme expression and pathway enrichment analyses, and visualization of metabolic networks with differential enzyme expression levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kanehisa M, Furumichi M, Tanabe M et al (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361

    Article  CAS  Google Scholar 

  2. Caspi R, Billington R, Ferrer L et al (2015) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 44:D471–D480

    Article  Google Scholar 

  3. Nicholson JK, Holmes E, Kinross J et al (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267

    Article  CAS  Google Scholar 

  4. Lee DS, Burd H, Liu J (2009) Comparative genome-scale metabolic reconstruction and flux balance analysis of multiple Staphylococcus aureus genomes identify novel antimicrobial drug targets. J Bacteriol 191:4015–4024

    Article  CAS  Google Scholar 

  5. Holmes E, Kinross J, Gibson GR (2012) Therapeutic modulation of microbiota-host metabolic interactions. Sci Transl Med 4:137rv136

    Article  Google Scholar 

  6. Wacker SA, Houghtaling BR, Elemento O et al (2012) Using transcriptome sequencing to identify mechanisms of drug action and resistance. Nat Chem Biol 8:235–237

    Article  CAS  Google Scholar 

  7. Webb OF (1992) Enzyme nomenclature. Academic Press

    Google Scholar 

  8. Moss GP (2017) Recommendations of the nomenclature committee of the international union of biochemistry and molecular biology on the nomenclature and classification of enzymes by the reactions they catalyse, http://www.chem.qmul.ac.uk/iubmb/enzyme/.

  9. Altschul SF, Madden TL, Schäffer AA (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  10. Moriya Y, Itoh M, Okuda S et al (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185

    Article  Google Scholar 

  11. Hung SS, Wasmuth J, Sanford C et al (2010) DETECT--a density estimation tool for enzyme classification and its application to Plasmodium falciparum. Bioinformatics 26:1690–1698

    Article  CAS  Google Scholar 

  12. Boeckmann B, Blatter MC, Famiglietti L et al (2005) Protein variety and functional diversity: Swiss-Prot annotation in its biological context. C R Biol 328:882–899

    Article  CAS  Google Scholar 

  13. Devos D, Valencia A (2001) Intrinsic errors in genome annotation. Trends Genet 17:429–431

    Article  CAS  Google Scholar 

  14. Schnoes AM, Brown SD, Dodevski I et al (2009) Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput Biol 5:e1000605

    Article  Google Scholar 

  15. Gerlt JA, Allen KN, Almo SC et al (2011) The Enzyme Function Initiative. Biochemistry 50:9950–9962

    Article  CAS  Google Scholar 

  16. Claudel-Renard C, Chevalet C, Faraut T et al (2003) Enzyme-specific profiles for genome annotation: PRIAM. Nucleic Acids Res 31:6633–6639

    Article  CAS  Google Scholar 

  17. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  CAS  Google Scholar 

  18. Sigrist CJ, De Castro E, Cerutti L (2012) New and continuing developments at PROSITE. Nucleic Acids Res 41:D334–D347

    Article  Google Scholar 

  19. Kumar N, Skolnick J (2012) EFICAz2.5: application of a high-precision enzyme function predictor to 396 proteomes. Bioinformatics 28:2687–2688

    Article  CAS  Google Scholar 

  20. Mohammed A, Guda C (2011) Computational Approaches for Automated Classification of Enzyme Sequences. J Proteomics Bioinform 4:147–152

    Article  CAS  Google Scholar 

  21. Mostafavi S, Morris Q (2010) Fast integration of heterogeneous data sources for predicting gene function with limited annotation. Bioinformatics 26:1759–1765

    Article  CAS  Google Scholar 

  22. Peregrin-Alvarez JM, Xiong X, Su C et al (2009) The Modular Organization of Protein Interactions in Escherichia coli. PLoS Comput Biol 5:e1000523

    Article  Google Scholar 

  23. Shannon P, Markiel A, Ozier O (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  Google Scholar 

  24. Yamada T, Letunic I, Okuda S et al (2011) iPath2.0: interactive pathway explorer. Nucleic Acids Res 39:W412–W415

    Article  CAS  Google Scholar 

  25. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Meth 12:59–60

    Article  CAS  Google Scholar 

  26. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  Google Scholar 

  27. Li W, Cowley A, Uludag M (2015) The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res 43:W580–W584

    Article  CAS  Google Scholar 

  28. Eddy SR (2011) Accelerated Profile HMM Searches. PLoS Comput Biol 7:e1002195

    Article  CAS  Google Scholar 

  29. Prosser JI (2010) Replicate or lie. Environ Microbiol 12:1806–1810

    Article  CAS  Google Scholar 

  30. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  Google Scholar 

  31. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  Google Scholar 

  32. Anders S, McCarthy DJ, Chen Y (2013) Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nature protocols 8:1765–1786

    Article  Google Scholar 

  33. R Core Team (2016) R: A language and environment for statistical computing.

    Google Scholar 

  34. Schurch NJ, Schofield P, Gierliński M (2016) How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA 22:839–851

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported through funding from the Natural Sciences and Engineering Research Council (RGPIN-2014-06664), and the University of Toronto’s Medicine by Design initiative which receives funding from the Canada First Research Excellence Fund. Computing resources were provided by the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada, the Government of Ontario, Ontario Research Fund—Research Excellence, and the University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejian Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Adeolu, M., Parkinson, J., Xiong, X. (2018). Analyzing Metabolic Pathways in Microbiomes. In: Beiko, R., Hsiao, W., Parkinson, J. (eds) Microbiome Analysis. Methods in Molecular Biology, vol 1849. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8728-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8728-3_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8726-9

  • Online ISBN: 978-1-4939-8728-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics