Advertisement

Quantifying Re-association of a Facultative Endohyphal Bacterium with a Filamentous Fungus

Protocol
  • 1.2k Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 1848)

Abstract

We present here a method to quantify reassociation between facultative endohyphal bacteria and filamentous fungal hosts. Our method takes advantage of the capabilities of fungal cell walls to selectively protect internal bacteria from gentamicin treatment, an assay adapted from studies of internalized bacterial pathogens in cell culture. We report the efficacy of gentamicin to kill planktonic bacteria treated during fungal coculture, and also describe and characterize a sampling scheme to recover and quantify culturable bacteria from the growing edge of fungal mycelium in vitro. This assay enables qualitative and quantitative tests of reassociation capabilities for facultative endohyphal bacteria with host fungi and provides a means to investigate the genetic basis for these associations in a repeatable way.

Key words

Endohyphal bacteria Endofungal bacteria Ascomycete Reassociation 

Notes

Acknowledgments

Financial support for this project was provided by the National Science Foundation (NSF IOS-1354219 to D. A. B., A. E. A., and Rachel E. Gallery). We thank Kayla Arendt, Sarah Araldi-Brondolo, Kevin Hockett, Rachel Gallery, and Justin Shaffer (University of Arizona) for helpful discussion and technical assistance.

References

  1. 1.
    Scherlach K, Graupner K, Hertweck C (2013) Molecular bacteria-fungi interactions: effects on environment, food, and medicine. Annu Rev Microbiol 67:375–397CrossRefPubMedGoogle Scholar
  2. 2.
    Bonfante P, Anca I-A (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383CrossRefPubMedGoogle Scholar
  3. 3.
    Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75(4):583–609CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kobayashi DY, Crouch JA (2009) Bacterial/fungal interactions: from pathogens to mutualistic endosymbionts. Annu Rev Phytopathol 47:63–82CrossRefPubMedGoogle Scholar
  5. 5.
    Araldi-Brondolo SJ, Spraker J, Shaffer JP, Woytenko EH, Baltrus DA, Gallery RE, Arnold AE (2017) Bacterial endosymbionts: master modulators of fungal phenotypes. Microbiol Spec 5(5).  https://doi.org/10.1128/microbiolspec.FUNK-0056-2016
  6. 6.
    Salvioli A, Ghignone S, Novero M, Navazio L, Venice F, Bagnaresi P, Bonfante P (2016) Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. ISME J 10(1):130–144CrossRefPubMedGoogle Scholar
  7. 7.
    Shaffer JP, U’Ren JM, Gallery RE, Baltrus DA, Arnold AE (2017) An endohyphal bacterium (chitinophaga, bacteroidetes) alters carbon source use by fusarium keratoplasticum (f. Solani species complex, nectriaceae). Front Microbiol 8(350).  https://doi.org/10.3389/fmicb.2017.00350
  8. 8.
    Lackner G, Hertweck C (2011) Impact of endofungal bacteria on infection biology, food safety, and drug development. PLoS Pathog 7:e1002096CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Shaffer JP, Sarmiento C, Zalamea PC, Gallery RE, Davis AS, Baltrus DA, Arnold AE (2016) Diversity, specificity, and phylogenetic relationships of endohyphal bacteria in fungi that inhabit tropical seeds and leaves. Front Ecol Evol 4:116CrossRefGoogle Scholar
  10. 10.
    Hoffman MT, Arnold AE (2010) Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 76:4063–4075CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Moebius N, Üzüm Z, Dijksterhuis J, Lackner G, Hertwick C (2014) Active invasion of bacteria into living fungal cells. eLife 3:e03007CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Arendt KR, Hockett KL, Araldi-Brondolo SJ, Baltrus DA, Arnold AE (2016) Isolation of endohyphal bacteria from foliar ascomycota and in vitro establishment of their symbiotic associations. Appl Environ Microbiol 82(10):2943–2949CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Edwards AM, Massey RC (2011) Invasion of human cells by a bacterial pathogen. J Vis Exp.  https://doi.org/10.3791/2693
  14. 14.
    Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, Villanueva J, Wei T, Ausubel FM (2006) An ordered, nonredundant library of Pseudomonas Aeruginosa strain PA14 transposon insertion mutants. Proc Nat Acad USA 103(8):2833–2838CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Plant SciencesUniversity of ArizonaTucsonUSA
  2. 2.School of Animal and Comparative Biomedical SciencesUniversity of ArizonaTucsonUSA
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA

Personalised recommendations