Advertisement

Single-Cell mRNA Sequencing of the Mouse Brain Vasculature

  • Michael VanlandewijckEmail author
  • Christer Betsholtz
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1846)

Abstract

In this chapter, we describe a method for analyzing the vasculature of the mouse brain using single-cell transcriptomics. More specifically, we focus on the use of fluorescence-activated cell sorting (FACS) for selection of the cells of interest and sorting of these cells in a 384-well format, allowing for enrichment for the cells being studied. Furthermore, we outline the Smart-Seq2 single-cell library construction method for transforming single-cell mRNA into Illumina sequencing compatible libraries. As single-cell sequencing is still a costly technology, we take special care to describe strategies to include many quality control steps. Finally, we touch upon techniques to convert the sequencing data into a meaningful biological readout. The methods reported in this chapter can be expanded toward other tissues and will prove useful also for the study of different cell types beyond adult brain vasculature.

Key words

Single-cell transcriptomics Brain vasculature Smart-Seq2 FACS Sequencing BackSPIN 

References

  1. 1.
    GBD 2015 Mortality and Causes of Death Collaborators (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the global burden of disease study 2015. Lancet 388(10053):1459–1544. https://doi.org/10.1016/s0140-6736(16)31012-1 CrossRefGoogle Scholar
  2. 2.
    Liu S (2016) Single-cell transcriptome sequencing: recent advances and remaining challenges. F1000Res 5:F1000. https://doi.org/10.12688/f1000research.7223.1 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I, Enard W (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65(4):631–643 e634. https://doi.org/10.1016/j.molcel.2017.01.023 CrossRefGoogle Scholar
  4. 4.
    Macosko Evan Z, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas Allison R, Kamitaki N, Martersteck Emily M, Trombetta John J, Weitz David A, Sanes Joshua R, Shalek Alex K, Regev A, McCarroll Steven A (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214. https://doi.org/10.1016/j.cell.2015.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10(11):1096–1098. https://doi.org/10.1038/nmeth.2639 CrossRefGoogle Scholar
  6. 6.
    He L, Vanlandewijck M, Raschperger E, Andaloussi Mae M, Jung B, Lebouvier T, Ando K, Hofmann J, Keller A, Betsholtz C (2016) Analysis of the brain mural cell transcriptome. Sci Rep 6:35108. https://doi.org/10.1038/srep35108 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Vanlandewijck M, He L, Mae MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Lavina B, Gouveia L, Sun Y, Raschperger E, Rasanen M, Zarb Y, Mochizuki N, Keller A, Lendahl U, Betsholtz C (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 554(7693):475–480. https://doi.org/10.1038/nature25739 CrossRefGoogle Scholar
  8. 8.
    Alva JA, Zovein AC, Monvoisin A, Murphy T, Salazar A, Harvey NL, Carmeliet P, Iruela-Arispe ML (2006) VE-cadherin-Cre-recombinase transgenic mouse: a tool for lineage analysis and gene deletion in endothelial cells. Dev Dynam 235(3):759–767. https://doi.org/10.1002/dvdy.20643 CrossRefGoogle Scholar
  9. 9.
    Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140. https://doi.org/10.1038/nn.2467 CrossRefGoogle Scholar
  10. 10.
    Chen Q, Zhang H, Liu Y, Adams S, Eilken H, Stehling M, Corada M, Dejana E, Zhou B, Adams RH (2016) Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat Commun 7:12422. https://doi.org/10.1038/ncomms12422 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45(9):593–605. https://doi.org/10.1002/dvg.20335 CrossRefGoogle Scholar
  12. 12.
    Ema M, Takahashi S, Rossant J (2006) Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors. Blood 107(1):111–117. https://doi.org/10.1182/blood-2005-05-1970 CrossRefPubMedGoogle Scholar
  13. 13.
    Lee JK, Tansey MG (2013) Microglia isolation from adult mouse brain. Methods Mol Biol 1041:17–23. https://doi.org/10.1007/978-1-62703-520-0_3 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nikodemova M, Watters JJ (2012) Efficient isolation of live microglia with preserved phenotypes from adult mouse brain. J Neuroinflammation 9:147. https://doi.org/10.1186/1742-2094-9-147 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using smart-seq2. Nat Protoc 9(1):171–181. https://doi.org/10.1038/nprot.2014.006 CrossRefPubMedGoogle Scholar
  16. 16.
    Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635 CrossRefGoogle Scholar
  17. 17.
    Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36. https://doi.org/10.1186/gb-2013-14-4-r36 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lvd M, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9(Nov):2579–2605Google Scholar
  19. 19.
    Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Jureus A, Marques S, Munguba H, He L, Betsholtz C, Rolny C, Castelo-Branco G, Hjerling-Leffler J, Linnarsson S (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347(6226):1138–1142. https://doi.org/10.1126/science.aaa1934 CrossRefGoogle Scholar
  20. 20.
    Tsafrir D, Tsafrir I, Ein-Dor L, Zuk O, Notterman DA, Domany E (2005) Sorting points into neighborhoods (SPIN): data analysis and visualization by ordering distance matrices. Bioinformatics 21(10):2301–2308. https://doi.org/10.1093/bioinformatics/bti329 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC)HuddingeSweden
  2. 2.Department of Immunology, Genetics and Pathology, Rudbeck LaboratoryUppsala UniversityUppsalaSweden

Personalised recommendations