High-Resolution Imaging of STIM/Orai Subcellular Localization Using Array Confocal Laser Scanning Microscopy

  • Andras T. Deak
  • Benjamin Gottschalk
  • Emrah Eroglu
  • Rene Rost
  • Markus Waldeck-Weiermair
  • Wolfgang F. Graier
  • Roland MalliEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1843)


The expression of chimeras that consist of a fluorescent protein (FP) conjugated with a protein of interest provides the ability to visualize, track, and quantify the subcellular localization and dynamics of specific proteins in biological samples. Array confocal laser scanning microscopy is an eminently suitable technique for live-cell imaging of FP-tagged fusion proteins. Here, we describe real-time monitoring of the subcellular dynamics of the stromal-interacting molecule 1 (STIM1) and Orai1, the key protagonists of store-operated Ca2+ entry (SOCE) under resting conditions, and upon Ca2+ mobilization from the endoplasmic reticulum (ER).

Key words

Ca2+ signaling Cell transfection Fluorescence microscopy Fluorescent proteins Genetically encoded tools Image analysis Live-cell imaging 



We thank Sandra Blass and Anna Schreilechner for their excellent technical assistance and Dr. C.J.S. Edgell (University of North Carolina, Chapel Hill, NC, USA) for the EA.hy926 cells. This work was supported by the Austrian Science Funds (FWF) with the project number P 28529-B27 and also sponsoring the DKplus Metabolic and Cardiovascular Disease (W1226-B18) of the Medical University of Graz. A.T.D., B.G., and E.E. was/are a fellow/fellows of the Doctoral College “Metabolic and Cardiovascular Disease” at the Medical University of Graz and was/are funded by the FWF (A.T.D.), Nikon Austria (B.G.), or BioTechMed (E.E.) (both within the Nikon-Center of Excellence, Graz) within the Doctoral College “Metabolic and Cardiovascular Disease” (FWF W 1226-B18, DKplus Metabolic and Cardiovascular Disease).


  1. 1.
    Olenych SG, Claxton NS, Ottenberg GK et al (2007) The fluorescent protein color palette. Curr Protoc Cell Biol. Chapter 21: Unit 21.5Google Scholar
  2. 2.
    Depry C, Mehta S, Zhang J (2013) Multiplexed visualization of dynamic signaling networks using genetically encoded fluorescent protein-based biosensors. Pflugers Arch 465:373–381CrossRefPubMedGoogle Scholar
  3. 3.
    Miyawaki A (2008) Green fluorescent protein glows gold. Cell 135:987–390CrossRefPubMedGoogle Scholar
  4. 4.
    Graier WF, Frieden M, Malli R (2007) Mitochondria and Ca2+ signaling: old guests, new functions. Pflugers Arch 455:375–396CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Liu X, Weaver D, Shirihai O et al (2009) Mitochondrial ‘kiss-and-run’: interplay between mitochondrial motility and fusion-fission dynamics. EMBO J 28:3074–3089CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Eisner V, Csordás G, Hajnóczky G (2013) Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle—pivotal roles in Ca2+ and reactive oxygen species signaling. J Cell Sci 126:2965–2978CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Karbowski M, Cleland MM, Roelofs BA (2014) Photoactivatable green fluorescent protein-based visualization and quantification of mitochondrial fusion and mitochondrial network complexity in living cells. Methods Enzymol 547:57–73CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Snapp E (2005) Design and use of fluorescent fusion proteins in cell biology. Curr Protoc Cell Biol. Chapter 21: Unit 21.4Google Scholar
  9. 9.
    Wu B, Piatkevich KD, Lionnet T et al (2011) Modern fluorescent proteins and imaging technologies to study gene expression, nuclear localization, and dynamics. Curr Opin Cell Biol 23:310–317CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Malli R, Naghdi S, Romanin C et al (2008) Cytosolic Ca2+ prevents the subplasmalemmal clustering of STIM1: an intrinsic mechanism to avoid Ca2+ overload. J Cell Sci 121:3133–3139CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    VanEngelenburg SB, Palmer AE (2008) Fluorescent biosensors of protein function. Curr Opin Chem Biol 12:60–65CrossRefPubMedGoogle Scholar
  12. 12.
    Gauthier-Kemper A, Weissmann C, Reyher HJ et al (2012) Monitoring cytoskeletal dynamics in living neurons using fluorescence photoactivation. Methods Enzymol 505:3–21CrossRefPubMedGoogle Scholar
  13. 13.
    Deak AT, Groschner LN, Alam MR et al (2013) The endocannabinoid N-arachidonoyl glycine (NAGly) inhibits store-operated Ca2+ entry by preventing STIM1-Orai1 interaction. J Cell Sci 126:879–888CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang SL, Yeromin AV, Zhang XHF et al (2006) Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci U S A 103:9357–9362CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Liou J, Kim ML, Heo WD et al (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Putney JW (2011) Origins of the concept of store-operated calcium entry. Front Biosci (Schol Ed) 3:980–384CrossRefGoogle Scholar
  17. 17.
    Parekh AB, Putney JW (2005) Store-operated calcium channels. Physiol Rev 85:757–810CrossRefPubMedGoogle Scholar
  18. 18.
    Soboloff J, Rothberg BS, Madesh M et al (2012) STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 13:549–565CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cahalan MD (2009) STIMulating store-operated Ca2+ entry. Nat Cell Biol 11:669–677CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Brandman O, Liou J, Park WS et al (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131:1327–1339CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Park CY, Hoover PJ, Mullins FM et al (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136:876–890CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Muik M, Frischauf I, Derler I et al (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283:8014–8022CrossRefPubMedGoogle Scholar
  23. 23.
    Várnai P, Tóth B, Tóth DJ et al (2007) Visualization and manipulation of plasma membrane-endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1-Orai1 complex. J Biol Chem 282:29678–29690CrossRefPubMedGoogle Scholar
  24. 24.
    Prakriya M, Feske S, Gwack Y et al (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233CrossRefPubMedGoogle Scholar
  25. 25.
    Barr VA, Bernot KM, Srikanth S et al (2008) Dynamic movement of the calcium sensor STIM1 and the calcium channel Orai1 in activated T-cells: puncta and distal caps. Mol Biol Cell 19:2802–2817CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Huang GN, Zeng W, Kim JY et al (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8:1003–1010CrossRefPubMedGoogle Scholar
  27. 27.
    Walther W, Stein U, Voss C et al (2003) Stability analysis for long-term storage of naked DNA: impact on nonviral in vivo gene transfer. Anal Biochem 318:230–235CrossRefPubMedGoogle Scholar
  28. 28.
    Walther W, Schmeer M, Kobelt D et al (2013) A seven-year storage report of good manufacturing practice-grade naked plasmid DNA: stability, topology, and in vitro/in vivo functional analysis. Human gene therapy. Clin Dev 24:147–153Google Scholar
  29. 29.
    Luik RM, Wang B, Prakriya M et al (2008) Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454:538–542CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Andras T. Deak
    • 1
    • 2
  • Benjamin Gottschalk
    • 1
  • Emrah Eroglu
    • 1
  • Rene Rost
    • 1
  • Markus Waldeck-Weiermair
    • 1
  • Wolfgang F. Graier
    • 1
  • Roland Malli
    • 1
    Email author
  1. 1.Molecular Biology and Biochemistry, Gottfried Schatz Research CenterMedical University of GrazGrazAustria
  2. 2.Clinical Division of Nephrology, Department of Internal MedicineMedical University of GrazGrazAustria

Personalised recommendations