Advertisement

Engineered Cross-Linking to Study the Pore Architecture of the CRAC Channel

  • Guolin Ma
  • Lian He
  • Ji Jing
  • Peng Tan
  • Yun Huang
  • Yubin ZhouEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1843)

Abstract

ORAI1 constitutes the pore-forming subunit of the calcium release-activated calcium (CRAC) channel, a prototypical store-operated channel that is essential for the activation of cells of the immune system. Here we describe a convenient yet powerful cross-linking approach to examine the pore architecture of CRAC channels using ORAI1 proteins engineered to contain one or two cysteine residues. The generalizable cross-linking in situ approach can also be readily extended to study other integral membrane proteins expressed in various types of cells.

Key words

Calcium signaling ORAI1 Calcium release-activated calcium channel Structure Disulfide bond Cross-linking Membrane protein Lymphocyte activation Stromal interaction molecule Store-operated calcium entry 

Notes

Acknowledgments

We thank the financial supports from the National Institutes of Health grant (R01GM112003, R21GM126532 and R01HL134780), the Welch Foundation (BE-1913), the American Cancer Society (RSG-16-215-01 TBE), the Cancer Prevention and Research Institute of Texas (RR140053), the American Heart Association (16IRG27250155), and the John S. Dunn Foundation and by an allocation from the Texas A&M University Health Science Center Startup Fund.

References

  1. 1.
    Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12CrossRefPubMedGoogle Scholar
  2. 2.
    Carrasco S, Meyer T (2011) STIM proteins and the endoplasmic reticulum-plasma membrane junctions. Annu Rev Biochem 80:973–1000CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hogan PG, Lewis RS, Rao A (2010) Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 28:491–533CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356CrossRefPubMedGoogle Scholar
  5. 5.
    Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810CrossRefPubMedGoogle Scholar
  6. 6.
    Soboloff J, Rothberg BS, Madesh M et al (2012) STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 13:549–565CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zweifach A, Lewis RS (1993) Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci U S A 90:6295–6299CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Liou J, Kim ML, Heo WD et al (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Roos J, DiGregorio PJ, Yeromin AV et al (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang SL, Yu Y, Roos J et al (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Feske S, Gwack Y, Prakriya M et al (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185CrossRefPubMedGoogle Scholar
  12. 12.
    Vig M, Peinelt C, Beck A et al (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhang SL, Yeromin AV, Zhang XH et al (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci U S A 103:9357–9362CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yeromin AV, Zhang SL, Jiang W et al (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443:226–229CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhou Y, Srinivasan P, Razavi S et al (2013) Initial activation of STIM1, the regulator of store-operated calcium entry. Nat Struct Mol Biol 20:973–981CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yuan JP, Zeng W, Dorwart MR et al (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11:337–343CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Park CY, Hoover PJ, Mullins FM et al (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136:876–890CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Muik M, Fahrner M, Derler I et al (2009) A cytosolic homomerization and a modulatory domain within STIM1 C terminus determine coupling to ORAI1 channels. J Biol Chem 284:8421–8426CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kawasaki T, Lange I, Feske S (2009) A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochem Biophys Res Commun 385:49–54CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhou Y, Meraner P, Kwon HT et al (2010) STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nat Struct Mol Biol 17:112–116CrossRefPubMedGoogle Scholar
  21. 21.
    Gudlur A, Zhou Y, Hogan PG (2013) STIM-ORAI interactions that control the CRAC channel. Curr Top Membr 71:33–58CrossRefPubMedGoogle Scholar
  22. 22.
    Picard C, McCarl CA, Papolos A et al (2009) STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med 360:1971–1980CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Feske S (2007) Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 7:690–702CrossRefPubMedGoogle Scholar
  24. 24.
    Feske S (2009) ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol Rev 231:189–209CrossRefPubMedGoogle Scholar
  25. 25.
    McCarl CA, Picard C, Khalil S et al (2009) ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J Allergy Clin Immunol 124:1311–1318.e1317CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Feske S (2010) CRAC channelopathies. Pflugers Arch 460:417–435CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Parekh AB (2010) Store-operated CRAC channels: function in health and disease. Nat Rev Drug Discov 9:399–410CrossRefPubMedGoogle Scholar
  28. 28.
    Naesens M, Kuypers DR, Sarwal M (2009) Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol 4:481–508PubMedGoogle Scholar
  29. 29.
    Zhou Y, Ramachandran S, Oh-Hora M et al (2010) Pore architecture of the ORAI1 store-operated calcium channel. Proc Natl Acad Sci U S A 107:4896–4901CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kobe B, Guncar G, Buchholz R et al (2008) Crystallography and protein-protein interactions: biological interfaces and crystal contacts. Biochem Soc Trans 36:1438–1441CrossRefPubMedGoogle Scholar
  31. 31.
    Muller G (2000) Towards 3D structures of G protein-coupled receptors: a multidisciplinary approach. Curr Med Chem 7:861–888CrossRefPubMedGoogle Scholar
  32. 32.
    Opella SJ (2013) Structure determination of membrane proteins by nuclear magnetic resonance spectroscopy. Annu Rev Anal Chem (Palo Alto, Calif) 6:305–328CrossRefGoogle Scholar
  33. 33.
    Muller H, Etzkorn M, Heise H (2013) Solid-state NMR spectroscopy of proteins. Top Curr Chem 335:121–156CrossRefPubMedGoogle Scholar
  34. 34.
    Goldbourt A (2013) Biomolecular magic-angle spinning solid-state NMR: recent methods and applications. Curr Opin Biotechnol 24:705–715CrossRefPubMedGoogle Scholar
  35. 35.
    Kim LY, Johnson MC, Schmidt-Krey I (2012) Cryo-EM in the study of membrane transport proteins. Compr Physiol 2:283–293PubMedGoogle Scholar
  36. 36.
    Wisedchaisri G, Reichow SL, Gonen T (2011) Advances in structural and functional analysis of membrane proteins by electron crystallography. Structure 19:1381–1393CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Fujiyoshi Y (2011) Electron crystallography for structural and functional studies of membrane proteins. J Electron Microsc 60(Suppl 1):S149–S159Google Scholar
  38. 38.
    McNally BA, Yamashita M, Engh A et al (2009) Structural determinants of ion permeation in CRAC channels. Proc Natl Acad Sci U S A 106:22516–22521CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Falke JJ, Koshland DE Jr (1987) Global flexibility in a sensory receptor: a site-directed cross-linking approach. Science 237:1596–1600CrossRefPubMedGoogle Scholar
  40. 40.
    Falke JJ, Dernburg AF, Sternberg DA et al (1988) Structure of a bacterial sensory receptor. A site-directed sulfhydryl study. J Biol Chem 263:14850–14858PubMedGoogle Scholar
  41. 41.
    Pakula AA, Simon MI (1992) Determination of transmembrane protein structure by disulfide cross-linking: the Escherichia coli Tar receptor. Proc Natl Acad Sci U S A 89:4144–4148CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hu J, Hu K, Liu T et al (2013) Novel structural and functional insights into m3 muscarinic receptor dimer/oligomer formation. J Biol Chem 288:34777–34790CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Umanah GK, Huang LY, Maccarone JM et al (2011) Changes in conformation at the cytoplasmic ends of the fifth and sixth transmembrane helices of a yeast G protein-coupled receptor in response to ligand binding. Biochemistry 50:6841–6854CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ward SD, Hamdan FF, Bloodworth LM et al (2006) Use of an in situ disulfide cross-linking strategy to study the dynamic properties of the cytoplasmic end of transmembrane domain VI of the M3 muscarinic acetylcholine receptor. Biochemistry 45:676–685CrossRefPubMedGoogle Scholar
  45. 45.
    Li JH, Hamdan FF, Kim SK et al (2008) Ligand-specific changes in M3 muscarinic acetylcholine receptor structure detected by a disulfide scanning strategy. Biochemistry 47:2776–2788CrossRefPubMedGoogle Scholar
  46. 46.
    Jiang J, Shrivastava IH, Watts SD et al (2011) Large collective motions regulate the functional properties of glutamate transporter trimers. Proc Natl Acad Sci U S A 108:15141–15146CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhang XY, Lloubes R, Duche D (2010) Channel domain of colicin A modifies the dimeric organization of its immunity protein. J Biol Chem 285:38053–38061CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lu C, Mi LZ, Grey MJ et al (2010) Structural evidence for loose linkage between ligand binding and kinase activation in the epidermal growth factor receptor. Mol Cell Biol 30:5432–5443CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lvov A, Gage SD, Berrios VM et al (2010) Identification of a protein-protein interaction between KCNE1 and the activation gate machinery of KCNQ1. J Gen Physiol 135:607–618CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Liu G, Niu X, Wu RS et al (2010) Location of modulatory beta subunits in BK potassium channels. J Gen Physiol 135:449–459CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Soetandyo N, Wang Q, Ye Y et al (2010) Role of intramembrane charged residues in the quality control of unassembled T-cell receptor alpha-chains at the endoplasmic reticulum. J Cell Sci 123:1031–1038CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kornilova AY, Kim J, Laudon H et al (2006) Deducing the transmembrane domain organization of presenilin-1 in gamma-secretase by cysteine disulfide cross-linking. Biochemistry 45:7598–7604CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    DeLeon-Rangel J, Ishmukhametov RR, Jiang W et al (2013) Interactions between subunits a and b in the rotary ATP synthase as determined by cross-linking. FEBS Lett 587:892–897CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Mudiyanselage AP, Yang M, Accomando LA et al (2013) Membrane association of a protein increases the rate, extent, and specificity of chemical cross-linking. Biochemistry 52:6127–6136CrossRefPubMedGoogle Scholar
  55. 55.
    Zhu L, Kaback HR, Dalbey RE (2013) YidC protein, a molecular chaperone for LacY protein folding via the SecYEG protein machinery. J Biol Chem 288:28180–28194CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Dabney-Smith C, Cline K (2009) Clustering of C-terminal stromal domains of Tha4 homo-oligomers during translocation by the Tat protein transport system. Mol Biol Cell 20:2060–2069CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Punginelli C, Maldonado B, Grahl S et al (2007) Cysteine scanning mutagenesis and topological mapping of the Escherichia coli twin-arginine translocase TatC component. J Bacteriol 189:5482–5494CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lee PA, Orriss GL, Buchanan G et al (2006) Cysteine-scanning mutagenesis and disulfide mapping studies of the conserved domain of the twin-arginine translocase TatB component. J Biol Chem 281:34072–34085CrossRefPubMedGoogle Scholar
  59. 59.
    Janowiak BE, Jennings-Antipov LD, Collier RJ (2011) Cys-Cys cross-linking shows contact between the N-terminus of lethal factor and Phe427 of the anthrax toxin pore. Biochemistry 50:3512–3516CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kobashi K (1968) Catalytic oxidation of sulfhydryl groups by o-phenanthroline copper complex. Biochim Biophys Acta 158:239–245CrossRefPubMedGoogle Scholar
  61. 61.
    Simonsen DG (1933) The oxidation of cysteine with iodine: formation of a sulfinic acid. J Biol Chem 101:35–42Google Scholar
  62. 62.
    Hou X, Pedi L, Diver MM et al (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338:1308–1313CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Guolin Ma
    • 1
  • Lian He
    • 1
  • Ji Jing
    • 1
  • Peng Tan
    • 1
  • Yun Huang
    • 1
  • Yubin Zhou
    • 1
    • 2
    Email author
  1. 1.Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine Texas A&M UniversityHoustonUSA
  2. 2.Department of Medical Physiology, College of MedicineTexas A&M UniversityTempleUSA

Personalised recommendations