Advertisement

Enrichment of Cell Surface-Associated Proteins in Gram-Positive Bacteria by Biotinylation or Trypsin Shaving for Mass Spectrometry Analysis

  • Florian Bonn
  • Sandra Maaß
  • Jan Maarten van Dijl
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1841)

Abstract

In microbial cells surface-exposed proteins represent a physiologically important class of molecules as they enable these cells to interact with their environment both as free-living organisms and during interactions with a host. However, the characteristics of these proteins are quite divergent, which makes attempts to enrich, analyze, and quantify these molecules a challenging task. In this chapter two complementary methods for the enrichment and identification of cell surface-associated proteins, namely the biotinylation and the shaving approaches, are presented. Both protocols have been optimized for Gram-positive bacteria, and we provide a step-by-step guide for sample generation. Possible pitfalls during protein preparation are discussed.

Key words

Proteins Cell surface Cell wall Membrane Lipid anchor Shaving Biotinylation Virulence factor 

Notes

Acknowledgments

This work was supported by grants from the Deutsche Forschungsgemeinschaft (SFB TRR 34 and GRK 1870) and Top Institute Pharma projects T4-213 and T4-502.

References

  1. 1.
    Lin J, Huang S, Zhang Q (2002) Outer membrane proteins: key players for bacterial adaptation in host niches. Microbes Infect 4(3):325–331CrossRefPubMedGoogle Scholar
  2. 2.
    Foster TJ, McDevitt D (1994) Surface-associated proteins of Staphylococcus aureus: their possible roles in virulence. FEMS Microbiol Lett 118(3):199–205CrossRefPubMedGoogle Scholar
  3. 3.
    Gordon RJ, Lowy FD (2008) Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis Off Publ Infect Dis Soc Am 46(Suppl 5):S350–S359CrossRefGoogle Scholar
  4. 4.
    Dreisbach A, van Dijl JM, Buist G (2011) The cell surface proteome of Staphylococcus aureus. Proteomics 11(15):3154–3168CrossRefPubMedGoogle Scholar
  5. 5.
    Hempel K, Herbst F-A, Moche M, Hecker M, Becher D (2011) Quantitative proteomic view on secreted, cell surface-associated, and cytoplasmic proteins of the methicillin-resistant human pathogen Staphylococcus aureus under iron-limited conditions. J Proteome Res 10(4):1657–1666CrossRefPubMedGoogle Scholar
  6. 6.
    Green NM (1975) Avidin. Adv Protein Chem 29:85–133CrossRefPubMedGoogle Scholar
  7. 7.
    Scheurer SB, Rybak J-N, Roesli C, Brunisholz RA, Potthast F, Schlapbach R, Neri D, Elia G (2005) Identification and relative quantification of membrane proteins by surface biotinylation and two-dimensional peptide mapping. Proteomics 5(11):2718–2728CrossRefPubMedGoogle Scholar
  8. 8.
    Rodríguez-Ortega MJ, Norais N, Bensi G, Liberatori S, Capo S, Mora M, Scarselli M, Doro F, Ferrari G, Garaguso I, Maggi T, Neumann A, Covre A, Telford JL, Grandi G (2006) Characterization and identification of vaccine candidate proteins through analysis of the group a Streptococcus surface proteome. Nat Biotechnol 24(2):191–197CrossRefPubMedGoogle Scholar
  9. 9.
    Olaya-Abril A, Jiménez-Munguía I, Gómez-Gascón L, Rodríguez-Ortega MJ (2014) Surfomics: shaving live organisms for a fast proteomic identification of surface proteins. J Proteome 97:164–176CrossRefGoogle Scholar
  10. 10.
    Dreisbach A, Hempel K, Buist G, Hecker M, Becher D, van Dijl JM (2010) Profiling the surfacome of Staphylococcus aureus. Proteomics 10(17):3082–3096CrossRefPubMedGoogle Scholar
  11. 11.
    Otto A, Bernhardt J, Meyer H, Schaffer M, Herbst F-A, Siebourg J, Mäder U, Lalk M, Hecker M, Becher D (2010) Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis. Nat Commun 1:137CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Pribyl T, Moche M, Dreisbach A, Bijlsma JJE, Saleh M, Abdullah MR, Hecker M, van Dijl JM, Becher D, Hammerschmidt S (2014) Influence of impaired lipoprotein biogenesis on surface and exoproteome of Streptococcus pneumoniae. J Proteome Res 13(2):650–667CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Florian Bonn
    • 1
  • Sandra Maaß
    • 2
  • Jan Maarten van Dijl
    • 3
  1. 1.Institute of Biochemistry II, University HospitalGoethe University School of MedicineFrankfurtGermany
  2. 2.Department of Microbial Proteomics, Institute for MicrobiologyUniversity GreifswaldGreifswaldGermany
  3. 3.Department of Medical Microbiology—Molecular BacteriologyUniversity Medical Center Groningen (UMCG)GroningenThe Netherlands

Personalised recommendations