Next-Generation Trapping of Protease Substrates by Label-Free Proteomics

  • Claudia Lindemann
  • Nikolas Thomanek
  • Katja Kuhlmann
  • Helmut E. Meyer
  • Katrin Marcus
  • Franz NarberhausEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1841)


AAA+ proteases (ATPases associated with various cellular activities) shape the cellular protein pool in response to environmental conditions. A prerequisite for understanding the underlying recognition and degradation principles is the identification of as many protease substrates as possible. Most previous studies made use of inactive protease variants to trap substrates, which were identified by 2D-gel based proteomics. Since this method is known for limitations in the identification of low-abundant proteins or proteins with many transmembrane domains, we established a trapping approach that overcomes these limitations. We used a proteolytically inactive FtsH variant (FtsHtrap) of Escherichia coli (E. coli) that is still able to bind and translocate substrates into the proteolytic chamber but no longer able to degrade proteins. Proteins associated with FtsHtrap or FtsHwt (proteolytically active FtsH) were purified, concentrated by an 1D-short gel, and identified by LC-coupled mass spectrometry (LC-MS) followed by label-free quantification. The identification of four known FtsH substrates validated this approach and suggests that it is generally applicable to AAA+ proteases.

Key words

Label-free proteomics Mass spectrometry Trapping protease substrate FtsH Regulated proteolysis AAA+ protease 



The authors would like to thank Alexandra Müller, Sina Langklotz, and Thilo Lerari for carefully reading the manuscript and for many helpful comments. The work was supported by grants from the German Research Foundation (DFG, SFB642: GTP- and ATP-dependent membrane processes) and P.U.R.E. (Protein Unit for Research in Europe, funded by the German federal state North Rhine-Westphalia).


  1. 1.
    Langklotz S, Narberhaus F (2011) The Escherichia coli replication inhibitor CspD is subject to growth-regulated degradation by the Lon protease. Mol Microbiol 80(5):1313–1325CrossRefGoogle Scholar
  2. 2.
    Schäkermann M, Langklotz S, Narberhaus F (2013) FtsH-mediated coordination of lipopolysaccharide biosynthesis in Escherichia coli correlates with the growth rate and the alarmone (p)ppGpp. J Bacteriol 195(9):1912–1919CrossRefPubMedGoogle Scholar
  3. 3.
    Tatsuta T, Tomoyasu T, Bukau B, Kitagawa M, Mori H, Karata K, Ogura T (1998) Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo. Mol Microbiol 30(3):583–593CrossRefGoogle Scholar
  4. 4.
    Sauer RT, Baker TA (2011) AAA+ proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 80:587–612CrossRefGoogle Scholar
  5. 5.
    Battesti A, Gottesman S (2013) Roles of adaptor proteins in regulation of bacterial proteolysis. Curr Opin Microbiol 16(2):140–147CrossRefPubMedGoogle Scholar
  6. 6.
    Gur E, Biran D, Ron EZ (2011) Regulated proteolysis in Gram-negative bacteria--how and when? Nat Rev Microbiol 9(12):839–848CrossRefGoogle Scholar
  7. 7.
    Konovalova A, Søgaard-Andersen L, Kroos L (2014) Regulated proteolysis in bacterial development. FEMS Microbiol Rev 38(3):493–522CrossRefGoogle Scholar
  8. 8.
    Langklotz S, Baumann U, Narberhaus F (2012) Structure and function of the bacterial AAA protease FtsH. Biochim Biophys Acta 1823(1):40–48CrossRefGoogle Scholar
  9. 9.
    Ogura T, Inoue K, Tatsuta T, Suzaki T, Karata K, Young K, Su LH, Fierke CA, Jackman JE, Raetz CR, Coleman J, Tomoyasu T, Matsuzawa H (1999) Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol Microbiol 31(3):833–844CrossRefGoogle Scholar
  10. 10.
    Führer F, Langklotz S, Narberhaus F (2006) The C-terminal end of LpxC is required for degradation by the FtsH protease. Mol Microbiol 59(3):1025–1036CrossRefGoogle Scholar
  11. 11.
    Flynn JM, Neher SB, Kim YI, Sauer RT, Baker TA (2003) Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell 11(3):671–683CrossRefGoogle Scholar
  12. 12.
    Feng J, Michalik S, Varming AN, Andersen JH, Albrecht D, Jelsbak L, Krieger S, Ohlsen K, Hecker M, Gerth U, Ingmer H, Frees D (2013) Trapping and proteomic identification of cellular substrates of the ClpP protease in Staphylococcus aureus. J Proteome Res 12(2):547–558CrossRefGoogle Scholar
  13. 13.
    Bhat NH, Vass RH, Stoddard PR, Shin DK, Chien P (2013) Identification of ClpP substrates in Caulobacter crescentus reveals a role for regulated proteolysis in bacterial development. Mol Microbiol 88(6):1083–1092CrossRefPubMedGoogle Scholar
  14. 14.
    Westphal K, Langklotz S, Thomanek N, Narberhaus F (2012) A trapping approach reveals novel substrates and physiological functions of the essential protease FtsH in Escherichia coli. J Biol Chem 287(51):42962–42971CrossRefPubMedGoogle Scholar
  15. 15.
    Kirstein J, Hoffmann A, Lilie H, Schmidt R, Rübsamen-Waigmann H, Brötz-Oesterhelt H, Mogk A, Turgay K (2009) The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol Med 1(1):37–49CrossRefPubMedGoogle Scholar
  16. 16.
    Kihara A, Akiyama Y, Ito K (1995) FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit. Proc Natl Acad Sci U S A 92(10):4532–4536CrossRefPubMedGoogle Scholar
  17. 17.
    Bertani D, Oppenheim AB, Narberhaus F (2001) An internal region of the RpoH heat shock transcription factor is critical for rapid degradation by the FtsH protease. FEBS Lett 493(1):17–20CrossRefGoogle Scholar
  18. 18.
    Katz C, Ron EZ (2008) Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli. J Bacteriol 190(21):7117–7122CrossRefPubMedGoogle Scholar
  19. 19.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372CrossRefPubMedGoogle Scholar
  20. 20.
    Megger DA, Bracht T, Meyer HE, Sitek B (2013) Label-free quantification in clinical proteomics. Biochim Biophys Acta 1834(8):1581–1590CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Claudia Lindemann
    • 1
  • Nikolas Thomanek
    • 1
  • Katja Kuhlmann
    • 1
  • Helmut E. Meyer
    • 1
  • Katrin Marcus
    • 1
  • Franz Narberhaus
    • 2
    Email author
  1. 1.Medizinisches Proteom-CenterRuhr-Universität BochumBochumGermany
  2. 2.Lehrstuhl für Biologie der MikroorganismenRuhr-Universität BochumBochumGermany

Personalised recommendations