Sulfur-34S and 36S Stable Isotope Labeling of Amino Acids for Quantification (SULAQ34/36) of Proteome Analyses

  • Florian-Alexander Herbst
  • Nico Jehmlich
  • Martin von Bergen
  • Frank SchmidtEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1841)


Quantitative proteome profiling of microorganisms by isotopic labeling of amino acids is still a challenge, because only microorganisms with auxotrophic character are able to embed amino acids into their biomass in a quantitatively correct manner. Here, we describe an isotopic labeling technique (sulfur stable isotope labeling of amino acids for quantification, SULAQ) for the sulfur-containing amino acids cysteine and methionine in a broad range of organisms. The metabolic labeling approach is suitable for gel-based and gel-free protein analysis.

Key words

Sulfur stable isotope labeling of amino acids for quantification SULAQ Sulfur-34S Sulfur-36S Quantitative proteomics 


  1. 1.
    Bachi A, Bonaldi T (2008) Quantitative proteomics as a new piece of the systems biology puzzle. J Proteome 71(3):357–367CrossRefGoogle Scholar
  2. 2.
    Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1(5):252–262CrossRefPubMedGoogle Scholar
  3. 3.
    Chen X, Sun L, Yu Y, Xue Y, Yang P (2007) Amino acid-coded tagging approaches in quantitative proteomics. Expert Rev Proteomics 4(1):25–37CrossRefPubMedGoogle Scholar
  4. 4.
    Filiou MD, Varadarajulu J, Teplytska L, Reckow S, Maccarrone G, Turck CW (2012) The 15N isotope effect in Escherichia coli: a neutron can make the difference. Proteomics 12(21):3121–3128CrossRefPubMedGoogle Scholar
  5. 5.
    Hoedt E, Zhang G, Neubert TA (2014) Stable isotope labeling by amino acids in cell culture (SILAC) for quantitative proteomics. Adv Exp Med Biol 806:93–106CrossRefPubMedGoogle Scholar
  6. 6.
    Matthes A, Kohl K, Schulze WX (2014) SILAC and alternatives in studying cellular proteomes of plants. Methods Mol Biol 1188:65–83CrossRefPubMedGoogle Scholar
  7. 7.
    Petriz BA, Franco OL (2014) Application of cutting-edge proteomics technologies for elucidating host-bacteria interactions. Adv Protein Chem Struct Biol 95:1–24CrossRefPubMedGoogle Scholar
  8. 8.
    Schmidt F, Volker U (2011) Proteome analysis of host-pathogen interactions: Investigation of pathogen responses to the host cell environment. Proteomics 11(15):3203–3211CrossRefPubMedGoogle Scholar
  9. 9.
    Muller SA, Pernitzsch SR, Haange SB, Uetz P, von Bergen M, Sharma CM, Kalkhof S (2015) Stable isotope labeling by amino acids in cell culture based proteomics reveals differences in protein abundances between spiral and coccoid forms of the gastric pathogen Helicobacter pylori. J Proteome 126:34–45CrossRefGoogle Scholar
  10. 10.
    Oda Y, Huang K, Cross FR, Cowburn D, Chait BT (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci U S A 96(12):6591–6596CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Snijders AP, de Koning B, Wright PC (2005) Perturbation and interpretation of nitrogen isotope distribution patterns in proteomics. J Proteome Res 4(6):2185–2191CrossRefPubMedGoogle Scholar
  12. 12.
    Jehmlich N, Schmidt F, Hartwich M, von Bergen M, Richnow HH, Vogt C (2008) Incorporation of carbon and nitrogen atoms into proteins measured by protein-based stable isotope probing (Protein-SIP). Rapid Commun Mass Spectrom 22(18):2889–2897CrossRefPubMedGoogle Scholar
  13. 13.
    Jehmlich N, Kopinke FD, Lenhard S, Vogt C, Herbst FA, Seifert J, Lissner U, Volker U, Schmidt F, von Bergen M (2012) Sulfur-36S stable isotope labeling of amino acids for quantification (SULAQ). Proteomics 12(1):37–42CrossRefPubMedGoogle Scholar
  14. 14.
    Herbst FA, Taubert M, Jehmlich N, Behr T, Schmidt F, von Bergen M, Seifert J (2013) Sulfur-34S stable isotope labeling of amino acids for quantification (SULAQ34) of proteomic changes in Pseudomonas fluorescens during naphthalene degradation. Mol Cell Proteomics 12(8):2060–2069CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24(21):2534–2536CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hoopmann MR, MacCoss MJ, Moritz RL (2012) Identification of peptide features in precursor spectra using Hardklor and Kronik. Curr Protoc Bioinformatics Chapter 13:Unit13 18Google Scholar
  17. 17.
    Otto A, Bernhardt J, Meyer H, Schaffer M, Herbst FA, Siebourg J, Mader U, Lalk M, Hecker M, Becher D (2010) Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis. Nat Commun 1:137CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1(6):2856–2860CrossRefPubMedGoogle Scholar
  19. 19.
    Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906CrossRefPubMedGoogle Scholar
  20. 20.
    Chen D, Shah A, Nguyen H, Loo D, Inder KL, Hill MM (2014) Online quantitative proteomics p-value calculator for permutation-based statistical testing of peptide ratios. J Proteome Res 13(9):4184–4191CrossRefPubMedGoogle Scholar
  21. 21.
    Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740CrossRefPubMedGoogle Scholar
  22. 22.
    Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Florian-Alexander Herbst
    • 1
  • Nico Jehmlich
    • 2
  • Martin von Bergen
    • 2
    • 3
  • Frank Schmidt
    • 4
    Email author
  1. 1.Department of Chemistry and BioscienceAalborg UniversityAalborg EastDenmark
  2. 2.Department of Molecular Systems BiologyHelmholtz Centre for Environmental Research–UFZLeipzigGermany
  3. 3.Department of MetabolomicsHelmholtz Centre for Environmental Research–UFZLeipzigGermany
  4. 4.Interfaculty Institute for Genetics and Functional GenomicsUniversity Medicine GreifswaldGreifswaldGermany

Personalised recommendations