Advertisement

High-Resolution Imaging Methods to Analyze LINC Complex Function During Drosophila Muscle Development

  • Alexander L. Auld
  • Mary Ann Collins
  • Torrey R. Mandigo
  • Eric S. Folker
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1840)

Abstract

Using Drosophila muscle development as a model system makes possible the identification of genetic pathways, temporal regulation of development, mechanisms of cellular development, and physiological impacts in a single system. Here we describe the basic techniques for the evaluation of the cellular development of muscle in Drosophila in both embryos and in larvae. These techniques are discussed within the context of how the LINC complex contributes to muscle development.

Key words

LINC complex Drosophila muscle Myonuclear position Muscle development Myogenesis 

References

  1. 1.
    Chang W, Worman HJ, Gundersen GG (2015) Accessorizing and anchoring the LINC complex for multifunctionality. J Cell Biol 208:11–22.  https://doi.org/10.1083/jcb.201409047CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Meinke P, Nguyen TD, Wehnert MS (2011) The LINC complex and human disease. Biochem Soc Trans 39:1693–1697.  https://doi.org/10.1042/BST20110658CrossRefPubMedGoogle Scholar
  3. 3.
    Meinke P, Schirmer EC (2015) LINC’ing form and function at the nuclear envelope. FEBS Lett 589:2514–2521.  https://doi.org/10.1016/j.febslet.2015.06.011CrossRefPubMedGoogle Scholar
  4. 4.
    Luxton GWG, Gomes ER, Folker ES et al (2010) Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329:956–959.  https://doi.org/10.1126/science.1189072CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    King MC, Drivas TG, Blobel G (2008) A network of nuclear envelope membrane proteins linking centromeres to microtubules. Cell 134:427–438CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhang X, Lei K, Yuan X et al (2009) SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64:173–187.  https://doi.org/10.1016/j.neuron.2009.08.018CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Elhanany-Tamir H, Yu YV, Shnayder M et al (2012) Organelle positioning in muscles requires cooperation between two KASH proteins and microtubules. J Cell Biol 198:833–846.  https://doi.org/10.1083/jcb.201204102CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang Q, Bethmann C, Worth NF et al (2007) Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet 16:2816–2833.  https://doi.org/10.1093/hmg/ddm238CrossRefPubMedGoogle Scholar
  9. 9.
    Nagano A, Koga R, Ogawa M et al (1996) Emerin deficiency at the nuclear membrane in patients with Emery-Dreifuss muscular dystrophy. Nat Genet 12:254–259.  https://doi.org/10.1038/ng0396-254CrossRefPubMedGoogle Scholar
  10. 10.
    Bonne G, Di Barletta MR, Varnous S et al (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21:285–288.  https://doi.org/10.1038/6799CrossRefPubMedGoogle Scholar
  11. 11.
    Puckelwartz MJ, Kessler E, Zhang Y et al (2009) Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice. Hum Mol Genet 18:607–620.  https://doi.org/10.1093/hmg/ddn386CrossRefPubMedGoogle Scholar
  12. 12.
    Bione S, Maestrini E, Rivella S et al (1994) Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet 8:323–327.  https://doi.org/10.1038/ng1294-323CrossRefPubMedGoogle Scholar
  13. 13.
    Wilson MH, Holzbaur ELF (2012) Opposing microtubule motors drive robust nuclear dynamics in developing muscle cells. J Cell Sci 125:4158–4169.  https://doi.org/10.1242/jcs.108688CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cadot B, Gache V, Vasyutina E et al (2012) Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3. Nat Publ Group 13:741–749.  https://doi.org/10.1038/embor.2012.89CrossRefGoogle Scholar
  15. 15.
    Iyer SR, Shah SB, Valencia AP et al (2016) Altered nuclear dynamics in MDX myofibers. J Appl Physiol 122:470–481.  https://doi.org/10.1152/japplphysiol.00857.2016CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Oddoux S, Zaal KJ, Tate V et al (2013) Microtubules that form the stationary lattice of muscle fibers are dynamic and nucleated at Golgi elements. J Cell Biol 203:205–213.  https://doi.org/10.1083/jcb.201304063CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Metzger T, Gache V, Xu M et al (2012) MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function. Nature 484:120–124.  https://doi.org/10.1038/nature10914CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Folker ES, Schulman VK, Baylies MK (2012) Muscle length and myonuclear position are independently regulated by distinct Dynein pathways. Development 139:3827–3837.  https://doi.org/10.1242/dev.079178CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Folker ES, Schulman VK, Baylies MK (2014) Translocating myonuclei have distinct leading and lagging edges that require kinesin and dynein. Development 141:355–366.  https://doi.org/10.1242/dev.095612CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Auld AL, Folker ES (2016) Nucleus-dependent sarcomere assembly is mediated by the LINC complex. Mol Biol Cell 27:2351–2359.  https://doi.org/10.1091/mbc.E16-01-0021CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Collins MA, Mandigo TR, Camuglia JM et al (2017) Emery-Dreifuss muscular dystrophy-linked genes and centronuclear myopathy-linked genes regulate myonuclear movement by distinct mechanisms. Mol Biol Cell.  https://doi.org/10.1091/mbc.E16-10-0721
  22. 22.
    Richardson BE, Becket K, Nowak SJ, Baylies MK (2007) SCAR/WAVE and Arp2/3 are crucial for cytoskeletal remodeling at the site of myoblast fusion. Deveolpment 134: 4357-67. https://doi.org/10.1242/dev.010678
  23. 23.
    Barton LJ, Pinto BS, Wallrath LL, and Geyer PK (2016) The Drosophila nuclear lamina protein otefin is required fro germline stem cell survival. Dev Cell 25: 645-54. https://doi.org/10.1016/j.devcel.2013.05.023

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alexander L. Auld
    • 1
  • Mary Ann Collins
    • 1
  • Torrey R. Mandigo
    • 1
  • Eric S. Folker
    • 1
  1. 1.Biology DepartmentBoston CollegeChestnut HillUSA

Personalised recommendations