Advertisement

Bioinformatics Assembling and Assessment of Novel Coxsackievirus B1 Genome

  • Jake Lin
  • Bryn Y. Kimura
  • Sami Oikarinen
  • Matti Nykter
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1838)

Abstract

The human microbiome project via application of metagenomic next-generation sequencing techniques has found surprising large and diverse amounts of microbial sequences across different body sites. There is a wave of investigators studying autoimmune related diseases designing from birth case and control studies to elucidate microbial associations and potential direct triggers. Sequencing analysis, considered big data as it typically includes millions of reads, is challenging but particularly demanding and complex is virome profiling due to its lack of pan-viral genomic signature. Impressively thousands of virus complete genomes have been deposited and these high-quality references are core components of virus profiling pipelines and databases. Still it is commonly known that most viral sequences do not map to known viruses. Moreover human viruses, particularly RNA groups, are notoriously heterogeneous due to high mutation rates. Here, we present the related assembling challenges and a series of bioinformatics steps that were applied in the construction of the complete consensus genome of a novel clinical isolate of Coxsackievirus B1. We further demonstrate our effort in calling mutations between prototype Coxsackievirus B1 sequence from GenBank and serial clinical isolate genome grown in cell culture.

Key words

Genomics Assembly Bioinformatics Enterovirus Coxsackievirus T1D 

References

  1. 1.
    Pociot F, Lernmark Å (2016) Genetic risk factors for type 1 diabetes. Lancet 387(10035):2331–2339CrossRefPubMedGoogle Scholar
  2. 2.
    Krogvold L, Edwin B, Buanes T et al (2015) Detection of a low-grade enteroviral infection in the islets of langerhans of living patients newly diagnosed with type 1 diabetes. Diabetes 64(5):1682–1687CrossRefPubMedGoogle Scholar
  3. 3.
    Sane F, Caloone D, Gmyr V et al (2013) Coxsackievirus B4 can infect human pancreas ductal cells and persist in ductal-like cell cultures which results in inhibition of Pdx1 expression and disturbed formation of islet-like cell aggregates. Cell Mol Life Sci 70(21):4169–4180CrossRefPubMedGoogle Scholar
  4. 4.
    Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842  https://doi.org/10.1093/bioinformatics/btq033 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Babraham Bioinformatics, FastQC. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 02 2018
  7. 7.
    Robinson JT, Thorvaldsdóttir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chikhi R, Medvedev P (2013) Informed and automated k-Mer size selection for genome assembly, HiTSeqGoogle Scholar
  9. 9.
    Li H, Handsaker B, Wysoker A et al (2009) 1000 genomes project, the sequence alignment/map format and SAM tools. Bioinformatics 25(16):2078–2079CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Flygare S, Simmon K, Miller C et al (2016) Taxonomer: an interactive metagenomics analysis portal for universal pathogen detection and host mRNA expression profiling. Genome Biol 17(1):111CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lin J, Kramna L, Autio R et al (2017) Vipie: web pipeline for parallel characterization of viral populations from multiple NGS samples. BMC Genomics 18(1):378CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
  14. 14.
    de Bruijn NG (1946) A combinatorial problem. Koninklijke Nederlandse Akademie v Wetenschappen 49:758–764Google Scholar
  15. 15.
    Attar N (2016) Viral evolution: more of the world’s a phage. Nat Rev Microbiol 14:269Google Scholar
  16. 16.
    Massilamany C, Gangaplara A, Basavalingappa RH et al (2015) Mutations in the 5' NTR and the non-structural protein 3A of the Coxsackievirus B3 selectively attenuate myocarditogenicity. PLoS One 10(6):e0131052CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chapman NM, Kim KS, Drescher KM et al (2008) 5′ terminal deletions in the genome of a coxsackievirus B2 strain occurred naturally in human heart. Virology 375(2):480–491CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rinehart JE, Gómez RM, Roos RP (1997) Molecular determinants for virulence in coxsackievirus B1 infection. J Virol 71(5):3986–3991PubMedPubMedCentralGoogle Scholar
  19. 19.
    Pomerantz MM, Freedman ML (2011) The genetics of cancer risk. Cancer J 17(6):416–422CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yamashita A, Sekizuka T, Kuroda M (2016) VirusTAP: viral genome-targeted assembly pipeline. Front Microbiol 7:32PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jake Lin
    • 1
    • 2
  • Bryn Y. Kimura
    • 1
  • Sami Oikarinen
    • 1
    • 2
  • Matti Nykter
    • 1
  1. 1.Computational Biology, Faculty of Medicine and Life SciencesUniversity of TampereTampereFinland
  2. 2.Virology, Faculty of Medicine and Life SciencesUniversity of TampereTampereFinland

Personalised recommendations